Appendices Index

Alphabetical Index

DESCRIPTION	PAGES	DESCRIPTION	PAGES	DESCRIPTION	PAGES	DESCRIPTION	PAGES
Agency Listings	346	Flow Capacity Pressure		How to Identify and Me	asure	SAE Recommended	
Analyzing Hose Failures	359	Drop Chart	357	Fluid Connectors	362	Practices	356
Fitting Assembly		Fluid Compatibility	349	Hydraulic Tubing Info	376	Service Life Routing	
Torque Values	376	Hose Size to Maximum				Installation Instructions	358
		Operating Pressure	345			Technical Data	343

Hose Dash Size to Maximum Operating Pressure

HOSE TO FITTING PAGE REFERENCE CHART

Hose

Pressures expressed in psi/bar.

Hose Part

Hose tube identification chart

- 1. Synthetic rubber
- 2. PTFE
- 3. Thermoplastic
- 4. AQP

5. Special application hose

6. EPDM

-04 -05 -06 -08 -10 -12 -16 -20 -24 -32 -40 -48 Number Page Tube -02 -03 FC252 0 5 50/3 50/3 40/3 40/3 35/2 FC352* 5 100/7 0 100/7 100/7 90/6 85/6 85/6 75/5 60/4 50/3 2550 0 5 225/16 2554 0 5 225/16 2570 0 5 225/16 225/16 225/16 FC829 0 6 225/16 FC629 0 1 225/16 225/16 2575 0 1 250/17 250/17 250/17 200/14 200/12 FC647 0 1 360/25 300/21 300/21 250/17 250/17 2556 0 360/25 300/21 300/21 250/17 250/17 1 FC332 4 250/17 250/17 250/17 0 250/17 250/17 2565 0 1 300/21 250/17 200/14 175/12 125/9 1531 0 5 300/21 300/21 300/21 300/21 1531A 0 5 300/21 2661* 0 4 300/21** 250/17** 200/14** 150/10⁺⁺ 100/7** 62/4 56/4 FC619 0 1 300/21** 250/17** 200/14** 150/10** 100/7** 62/4 56/4 CR170 0 5 350/24 350/24 350/24 350/24 FC321 0 5 350/24 350/24 350/24 350/24 350/24 350/24 350/24 FC498 0 4 400/28 400/28 400/28 350/24 350/24 FC598 0 4 400/28 400/28 350/24 350/24 400/28 FC466 0 400/28 400/28 400/28 350/24 350/24 1 FC699 0 5 400/28 400/28 400/28 350/24 350/24 250/17 302A 0 1 800/55 600/41 500/34 350/24 2580 600/41 400/28 0 1 1000/69 800/55 650/45 625/43 550/38 500/34 450/31 350/24 2583 0 1 1250/86 1125/78 1000/69 750/52 565/39 375/26 1000/69 0 4 1000/69 1000/69 1000/69 1000/69 FC650 FC364 0 2 1250/86 1100/76 1000/69 1000/69 750/52 500/34 100/7100/7 FC363 0 2 1250/86 1100/76 1000/69 1000/69 750/52 500/34 FC355 0 4 1500/103 1500/103 1500/103 1250/86 1250/86 750/52 400/28 300/21 250/17 200/14 FC234 0 5 1500/103 1500/103 1250/86 1250/86 750/52 400/28 2000/138 1500/103 FC350 0 4 1500/103 1250/86 1250/86 750/52 400/28 300/21 250/17 FC563 0 2 1250/86 1100/76 1000/69 1000/69 750/52 500/34 2 2750/190 2500/172 1750/121 1500/103 1125/78 800/55 2808 0 FC211 0 1 2750/190 2250/155 2000/138 1250/86 1000/69 FC465 0 2 3000/207 3000/207 2500/172 2000/138 1500/103 1200/83 1000/69 3000/207 625/43 3000/207 3000/207 2500/172 1500/103 2807 0 2 3000/207 2000/138 1200/83 1000/69 625/43 2 FC807 0 3000/207 2500/172 2000/138 1500/103 1200/83 1000/69 3000/207 FC300 0 4 3000/207 3000/207 2250/155 2000/138 1750/121 1500/103 800/55 625/43 500/34 300/21 300/21 FC611 0 6 3000/207 2250/155 2000/138 1250/86 1000/69 625/43 500/34 375/26 1503 0 1 3000/207 3000/207 2250/155 2000/138 1750/121 1500/103 800/55 625/43 500/34 350/24 350/24 2651 0 1 3000/207 3000/207 2250/155 2000/138 1750/121 1500/103 800/55 625/43 500/34 350/24 350/24 0 303 1 3000/207 3000/207 2000/138 2000/138 1750/121 1500/103 FC639/ 0 3000/207 3000/207 3000/207 3000/207 3000/207 3000/207 FC839B 1

‡ Pressure rating with Global crimp style fittings

§ 10,000 psi for static jack hose applications. See hose page for details.

¥ 10,000 psi for water blast applications. See hose page for details.

* See hose page for dash sizes not listed.

†† 50 psi max with band clamp style fittings

LOW & MEDIUM PRESSURE HOSE

HIGH PRESSURE HOSE

HOSE FITTINGS

ADAPTERS & TUBE FITTINGS

ACCESSORIES & ASSEMBLY INSTRUCTIONS

HOSE ASSEMBLY Equipment

344

APPENDICIES

Hose Dash Size to Maximum **Operating Pressure**

Pressures expressed in psi/bar.

This table is intended as a guide in the selection of hose by maximum operating pressure. It is not a guarantee. Final selection is further dependent on fluid and ambient temperature, concentration of fluid, intermittent or continuous exposure, etc.

For further details on a specific hose see the respective catalog pages or contact Eaton Corporation at 14615 Lone Oak Road, Eden Prairie, MN 55344 USA 952/937-9800.

SPECIALTY & Truck Hose

Hose Par Number	t Page	Tube	Hose -02	-03	-04	-05	-06	-08	-10	-12	-16	-20	-24	-32	-40	-48	
GH681	0	1			3000/207		3000/207	3000/207									
-C194	0	4			3250/224		3000/207	2500/172	2000/138	1750/121	1250/86	900/62					
GH194	0	4			3250/224		3000/207	2500/172	2000/138	1800/124	1300/90	900/62					
GH663	0	1			3250/224		3000/207	2500/172		1800/124	1300/90	950/66	725/50	580/40			
					2750/190†		2250/1551	2000/1381	-	1250/86†	1000/69†						
681	0	1		4000/276	3250/224	3250/224	3000/207	2500/172	2000/138	1800/124	1300/90	900/62	700/48	600			
iH493	0	1					4000/276	4000/276	4000/276	4000/276	4000/276	3000/207	2500/172	2500/172			
C323	0	4								3000/207	3000/207	3000/207	3000/207	3000/207			
C324	0	4						4000/276		4000/276	4000/276						
C469	0	2						4000/276	4000/276	3500/241							
C849/	0	0			4000/276		4000/276	4000/276	4000/276	4000/276							
C212	0	1		-	5000/2/0		4000/270	3500/2/0	1000/210	2250/155	2000/132	1625/112	1250/86	1125/79		+	
C212	0	1	-		5000/343		4000/270	3500/241	2750/100	2250/155	2000/130	1625/112	1230/00	1123/70			
0010	0	6			5000/343		4000/270	2500/241	2/30/190	2230/133	2000/130	1023/112				+	
L120	0	1			5000/343		4000/270	2500/241	2750/100	2250/155	2000/120	1625/112	1250/06	1125/70			
	0	1			5000/345		4000/270	3000/241	2750/190	2200/100	2000/130	1020/112	1200/00	1123/70			
0005	0	4			5000/345		4000/276	3500/241	2750/190	2200/100	2000/138	1020/112					
0325	U	4								5000/345	5000/345						
C273B	0	1								5000/345	5000/345	5000/345	5000/345	5000/345			
C659	0	1					4000/276	4000/276	4000/276	4000/276	4000/276	3000/207	2500/172	2500/172			
C136	0	1					5500/270	5000/270	5000/345	4000/276	4000/276	3000/207	2500/172	2500/172			
0100	U	· ·					4000/276	4000/276	4000/276	4000/270	4000/270	5000/207	2300/172	2300/172			
C636	0	6								4000/276	4000/276	3000/207	2500/172				
C735	0	1			5000/345		5000/345	4250/293	3625/250	3125/216	2500/172	2250/155					
C736	0	1					5500/379	5000/345	5000/345	4000/276	4000/276	3000/207	2500/172	2500/172			
							4000/276	4000/276	4000/276‡								
766	0	1			5000/345		4000/276	3500/241		2250/155	2000/138	1625/112	1250/86	1000/69			
781	0	1			5000/345		4000/276	3500/241	3250/224	3000/207	2000/138	1625/112	1750/121	1250/86			
					5750/397‡		5000/345	4250/293	3625/250‡	3125/216‡	2500/172‡	2250/155	1800/124‡	1500/103‡			
C195	0	4			5000/345		4000/276	3500/241	2750/190	3000/207	2000/138	1625/112	1750/121	1250/86			
					5750/397±		5000/345	4250/293	3250/224±	3125/216±	2500/172‡	2250/155‡	1800/124‡	1500/103‡			
GH195	0	4		1	5750/397		5000/345	4250/293	3250/224	3000/207	2500/172	2250/155	1750/121	1500/103		<u> </u>	
GH781	0	1		1	5750/400		5000/345	4250/293	3625/250	3125/216	2500/172	2250/155	1800/124	1300/90		1	
H793	0	1	1		5750/397		5000/345	4250/293	3625/250	3125/216	2500/172	2250/155	1800/124	1300/90		1	
	-				5000/345+		4000/276+	3500/241+	2750/190+	2250/155+	2000/138+						
H506	0	1								6090/420	5510/380	5075/350	4250/293	3625/250		<u> </u>	
C254	0	1						7500/517	(6250/431	5000/345	4000/276	3000/207	3000/207			
H466	0	1								2200, 101	000,010	5510/380	2300,201	5000,207			
-C606/	5	+ •	1	1					-			3010/000				+	
-C606B	0	1			10000/000		10000/000				6000/414	6000/414	6000/414			<u> </u>	
-05/9***	U	1			10000/690§		10000/690										

† Pressure rating with reusable style fittings.

‡ Pressure rating with Global crimp style fittings. § 10,000 psi for static jack hose applications. See hose page for details.

¥ 10,000 psi for water blast applications. See hose page for details.

* See hose page for dash sizes not listed.

†† 50 psi max with band clamp style fittings.

Agency Listings

Government Agencies

DOT/FMVSS – US Department of Transportation, Federal Motor Vehicle Safety Standard

FDA – US Food and Drug Administration (tubes only)

MIL/DOD – US Military Specification, Dept. of Defense

MSHA – US Mine Safety and Health Administration

USCG/MMT – US Coast Guard, Merchant Marine Technical (SAE J1942 has replaced USCG approval)

DNV – Det Norske (Norwegian) Veritas

CGA – Canadian Gas Association

The listings below are intended only as guides in identifying which Aeroquip hoses comply with requirements of various agencies. For current and complete information, contact Eaton.

Industry Agencies

AAR – American Association of Railroads

- DIN Deutsche (German) Industrial Norme (Replaced by EN)
- **EN –** Committee for European Normalization
- ABS- American Bureau of Shipping
- **SAE** Society of Automotive Engineers
- **UL –** Underwriters Laboratories
- ISO International Standards Organization
- \star = Approved details available from Eaton

*Listing may vary by hose style and size, some hoses may require firesleeve or special procedures depending on specific applications, contact Eaton for details.

		GOVERN	MENT							Y					
Hose Part Number	Page	DOT/ FMVSS	CGA	DNV	FDA*	MIL/ DOD	MSHA	USCG/ MMT*	ISO	EN	DIN	AAR	ABS	SAE	UL
1503	0	106 Type All		*				*						100R5, J1402	
1531	0											M618			
1531A	0											M618			
2550	0	106 Type All						*						J1402	
2554															
2556	0			*			*								
2565	0					MIL-H-13444 Type I									
2570	0	106 Type All						*						J1402	
2580	0					MIL-H-24136/3	*	*							
2583	0			*			*			EN 854 Type R3				100R3	
2651	0			*			*	*					*		
2661	0						*	*					★+	100R4	
2681	0			*			*	*	1436 Type 1ST	EN 853 Type 1ST	20 022 Type 1ST			100R1A	
2781	0								1436	EN 853	20 022				
				*			*	*	Type 1ST	Type 2ST	Type 2ST			100R2A	
2807	0			*				*					*	100R14A	
2808	0							*					*		
302A	0					MIL-DIL-8794									
303	0					MIL-DTL-8794									
CR1/0	0		lype III							EN 050					
FC136	0			*			*	*	3862 Type R12	EN 856 Type R12			*	100R12	
FC194	0			★+			*	*	1436 Type 1ST	EN 856 Type 1ST	20 022 Type 1ST			100R1A, J1019	
FC195	0						*	*	1436 Type 2ST	EN 856 Type 1ST	20 022 Type 1ST			100R2A	
FC211	0						*	*	1436 Type R1AT					100R2AT	
FC212	0						*	*	1436 Type B1AT					100R2AT	
FC234	0			+			<u> </u>	·					+	J1527	
FC252	0			├^										Type AT	-
10202	0	1		1	1					1	1				

★ = Approved details available from Eaton

§ = In size -04 meets ISO 1436 Type R2AT

+ = Firesleeve required. Contact Eaton for details.

‡ = Does not meet in -04 size

SPECIALTY & TRUCK HOSE

HOSE ASSEMBLY Equipment

Agency Listings

		GOVERNI	MENT							RY						CIALTY &
Hose Part Number	Page	DOT/ FMVSS	CGA	DNV	FDA*	MIL/ DOD	MSHA	USCG/ MMT*	ISO	EN	DIN	AAR	ABS	SAE	UL	SPE TRU
FC254	0			*			*	*					*	100R11		
FC273	0								3862	EN 856						
				*			*	*	Type R13	Type R13			*	100R13		UM
FC273B	0								3862 Type R13	EN 856 Type R13				100R13		MEDI URE HO
FC300	0	106 Type All												100R5,		N &
														J1019,		PBII
F0010	•			×				*					*	J 1402		
FC310	U						+	+		EIN 857			+	100B16		
FC321	0						+ ^ -	<u> </u>						1001110	1 21	щ
FC323	0						-							100R11		SOH
10020	U						*	*					*	100R12		JRE
FC324	0									EN 856					<u> </u>	SSL
								*	*		Type R12		*	100R12		PRE
FC325	0									EN 856						HĐI
							*	*		Type R13				100R13		Ŧ
FC332	0												★+			
FC350	0	106 Type All		★+			_	*	*				*	J1402		
FC352	0													20R1		GS
FC355	0	106 Type All											*	J1402		NE
FC363	0				*		_	*								E
FC364	0				*		_									ISOI
FC465	0						_							100R14B		-
FC466	0									EN 854				100DC		
FC460	0									туре по				IUUNO		
FC409	0															
FG490	U						×			Type R6				100R6		& NGS
FC510	0									EN 857					-	ERS
	-						*	*		Type 1SC				100R2AT		APT 8E F
FC555	0															AD DI
FC558	0													J2064		
														Type B		
ECE62	0															ş
EC570	0															IOIL:
ECE00	0						^							10006		a BUG
EC606	0									2062				Tuunu		IES
FC000	U						*			Type R15			*	100R15		SOR
FC606B	0									3862					-	SES!
	-									Type R15				100R15		AC
FC611	0															
FC619	0				*		*						★+	100R4		
FC629	0	106 Type All												J1402		BLY
FC636	0															NT
FC639	0						*						*	100R17		ASS
FC647	0															DIP
FC650	0															ЯB

 \bigstar = Approved details available from Eaton.

+ Firesleeve required. Contact Eaton for details.

\$Applies only to hose that has suffered no damage, has been properly assembled with hose guards and tested to required proof test pressure.

Agency Listings

SPECIALTY & Truck hose

OW PRES			GOVERNI	MENT							RY					
& MEDIUM SURE HOSE	Hose Part Number FC659	Page O	DOT/ FMVSS	CGA	DNV	FDA*	MIL/ DOD	MSHA	USCG/ MMT*	ISO	EN E3862 Type B12	DIN EN 856 Type B12	AAR	ABS	SAE	UL
	EC.603	0			+ ^			<u> </u>			TypeTTZ	Type TTZ		^	1001112	
Ŧ	FC699	0		-				_								
IGH P	FC735	0									1436	20 022				
RESSL	FC736	0									Type 2SN§ 3862	Type 2SN EN856	‡		100R16	<u> </u>
JRE		-									Type R12	Type R12			100R12	
HOS	FC807	0													100R14A	
Ĥ	FC829	0	106 Type All											J1420		
	FC839B	0													100R17	
	FC849	0						*	*					*		
E	FC849B	0														
DSE	GH120	0						*							100R16	
FITTIN	GH194	0			★+			*		1436 Type 1SN	EN 853 Type 1SN	20 022 Type 1SN		*	100R1AT	
GS	GH195	0						*	*	1436 Type 2SN	EN 853 Type 2SN	20 022 Type 2SN		*	100R2AT	
	GH466	0						*								
_ .	GH493	0			*			*	*	3862 Type R12	EN 853 TypeR12			*	100R12	
ADAPT TUBE FI	GH506	0			*			*		3862 Type 4SH	EN856 Type 4SH	20 023 Type T2				
ERS &	GH663	0			*			*	★ ††	1436 Type 1SN	EN 853 Type 1SN	20 022 Type 1SN		*	100R1AT	
8	GH681	0						*				DIN20022 Type 1				
AC	GH781	0			*			*	*		EN 853 Type 2SC			*	100R16	
Cess	GH793	0			+			*	*	1436 Type 2SN	EN 853 Type 2SN	20 022 Type 2SN		*	100R2AT	

HOSE ASSEMBLY Equipment

Fluid compatibility

This chart indicates the suitability of various elastomers and metals for use with fluids to be conveyed. It is intended as a guide only and is not a guarantee. Final selection of the proper hose style, seal, or material of metal components is further dependent on many factors including pressure, fluid and ambient temperature, concentration, duration of exposure, etc.

How to use the chart

1. The chart has separate sections for rating elastomers for use as hose inner tubes and as seals. Ratings for a given elastomer may not always be the same in both sections.

2. Both the elastomer and the metal must be considered when determining suitability of a combination for a hose assembly. adapter with o-ring, swivel ioint or coupling.

3. Locate the fluid to be conveyed and determine the suitability of the elastomeric and metal components according to the resistance ratings shown for each.

4. Specific hose part numbers can be found under the inner tube material groupings in the Hose Tube Identification Chart below.

5. Dimensional and operating specifications for each hose can be found on the catalog pages shown with each hose part number.

6. Information on o-rings and seal options for swivel joints and couplings, and how to specify them, are shown in the respective sections of this catalog.

7. For further details on the products shown in this catalog, and their applications, contact:

Faton

14615 Lone Oak Road Eden Prairie, MN 55344 USA 952/937-9800; Fax: 952/974-7722 www.hydraulics.eaton.com

Resistance key rating

E = Excellent - Fluid has little or no effect.

- G = Good Fluid hasminor to moderate effect.
- C = Conditional Service conditions should be described to Eaton Aeroquip for determination of suitability for application.

U = UNSATISFACTORY

The differences between ratings "E" and "G" are relative. Both indicate satisfactory service. Where there is a choice, the materials rated "E" may be expected to give better or longer service than those rated "G".

NOTE: Special precautions are necessary in gaseous applications due to the potential volume of gaseous fluid in the system. Unless the cover is perforated, hose styles with rubber or thermoplastic covers are not suitable for gases above 250 psi. Hose styles with perforated covers are so noted in their construction descriptions.

WARNING

Compatibility of hose fittings with conveyed fluid is an essential factor in avoiding chemical reactions that may result in release of fluids or failure of the connection with the potential of causing severe personal injury or property damage.

Hose tube identification chart

1. Nitri	le					
302A (p	.26)	FC136 (p.52)	FC619 (p.34)	GH120 (p.45)	
303 (p.	26)	FC211 (p.38)	FC639/ (p.42)	GH466 (p.55)	
1503 (p	.26)	FC212 (p.44)	FC606 (p.56)	GH493 (p.51)	
2556 (p	.34)	FC254 (p.53)	FC647 (p.33)	GH506 (p.55)	EH
2565 (p	.34)	FC273/	(p.54)	FC659 (p.52)	GH663 (p.39)	& M SUR
2580 (p	.37)	FC273B	(p.54)	FC735 (p.46)	GH681 (p.42)	RES OV
2583 (p	.37)	FC310 (p.41)	FC736 (p.53)	GH781 (p.47)	25
2651 (p	.25)	FC466 (p.35)	FC849/ (p.43)	GH793 (p.48)	
2681 (p	.38)	FC579 (p.57)	FC849B (p.44)		
2781 (p	.47)			FC849B (p.43)		OSE
2. PTFE						Ŧ
2807 (p	.28)	FC363 (p.31)	FC465 (p.29)	FC563 (p.32)	SUR
2808 (p	.30)	FC364 (p.31)	FC469 (p.30)	FC807 (p.29)	RES
3. Ther	moplastic	Elastome	r			IGH P
4. AQP						Ŧ
2661 (p	.35)	FC323 (p.50)	FC350 (p.23)	FC598 (p.36)	
FC194 (p.40)	FC324 (p.50)	FC355 (p.23)	FC650 (p.24)	
FC195 (p.49)	FC325 (p.51)	FC498 (p.36)	FC699 (p.24)	GS
FC234 (p.25)	FC332 (p.33)	FC510 (p.41)	GH194 (p.39)	E E
FC300 (p.27)			FC598 (p.36)	GH195 (p.48)	E
5. Spec	cial Applic	ation Hos	se (Not Ir	cluded in Fluid Chart		SOH
FC234	FC650			Fuel	(pp.25, 24)	
CR170	FC321			LPG	(pp.27, 28)	
1531	1531A			Railroad Air Brak	e (p.22)	
FC252	FC352	FC629	FC829	Silicone	(p.20)	2
2550	2554	2570	FC350	Truck Air Brake	(pp.21-23)	IING &
6. EPD	M Rubber					PTER

FC693 (p.46) FC611 (p.40) FC636 (p.49)

SEAL	ELASTOMER DATA	

Seal Elastomer	Application Specification	Max. Operating Temperature Range
Buna-N†	none	–40°C to +121°C [–40°F to +250°F]
Neoprene	none	-54°C to +100°C [-65°F to +212°F]
EPR (Ethylene Propylene Rubber)/EPDM	none	–54°C to +149°C [–65°F to +300°F]
Viton*	MIL-R-25897	-29°C to +204°C [-15°F to +400°F]

†Buna-N temperature range -65°F to +225°F. Also per MIL-R-6855 *Viton is a trademark of E.I. DuPont

HIGH PRESSURE HOSE

	Fluid												
SPECIALTY & Truck hose	Compatibility	c Elastomer cation Hose		c Elastomer	ication Hose						-	5	
LOV	E = EXCELLENT G = GOOD C = CONDITIONAL U = UNSATISFACTORY	A dopen and the second and the secon	L Nitrile	o Thermoplasti	 AQP Special Appli EPDM 	Buna-N	Neoprene EPR	Viton* Urethane	Hytrel	Steel	Brass Stainless Ste	Aluminum	Monel
N & N SSUI	FLUID	HOSE SEALS METAL FLUID	Ľ.	HOS	E		SEAI	LS			MET	AL	
Medium Re hose	Acetaldehyde Acetic Acid, 10% Acetic Acid, Glacial Acetone Acetophenone	J E C U G U C C U U G G E E E Calcium Hydroxide, 10% aq J E C C E U U E G U C U U C C U C C G J E C C E U U C U U C U U C C C C Calcium Hypochlorite, 10% aq J E G U E U U G U U G E E E E C C Carbitol J E - U E U U E U U - E E E C E Carbolic Acid (Phenol)	E E E E G E U E	C C E G U	C E U E G E C G U C	E U E G U	E E U E E E G G U G	E U E U E E G U E U	C E G U	G U G E U	GG CG GG EE EE	U U G E	G U G E –
Ξ	Acetyl Acetone Acetyl Chloride	JEUU EUUGUUGUUCCCC Carbonic Acid JEUU UUUUEUUCCCUE Carbon Dioxide. Drv gas'	I C E E E	E C E E	U E E E	G G	E E G E	E C E G	C E	U E	CE EE	G E	E E
GH PRESSURE HOSE	Acetylene ¹ Air, Hot (Up to +160°F) ¹ Air, Hot (161°F – 200°F) ¹ Air, Hot (201°F – 300°F) ¹ Air Wet, below 160°F ¹ Aluminum Chloride, 10% aq Aluminum Riuoride, 10% aq	G E G G E U U G E G G E E E E Carbon Disulfide E E E E E E E E E E E E E Carbon Monoxide C E U E E G G E E G G E E E E Carbon Monoxide C E U E E G G E E G G E E E E Carbon Tetrachloride J E U C G U U G E U U E E E E Castor Oil E E C E E E E G C U G E E Castor Oil E E C E E E E E G C U G E E Castor Oil E E E E E E E G C U G E E Castor Oil E E E E E E E G E U U U U China Wood Oil (Tung Oil) E E U E E E E G E U U U E C Chlorine E E E C F E F F F G E U U C C C Chloroacetic Acid				UGUEUGUU				GEUEUECU		E E U E G E C	GEEEECG
HOSE FITTINGS	Aluminum Sulfate, 10% aq Alums, 10% aq Ammonia, Cold Ammonia, Hot Ammonia, Anhydrous Ammonia, Aqueous Ammonium Carbonate, 10% aq Ammonium Hydroxide, 10% aq	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U U U U U U U U U U U U U U U U U U U						G G G G G C C C E L			GGGGCUUCU
ADAPTERS & Tube Fittings	Ammonium Phosphate, 10% aq Ammonium Sulfate/Sulfide, 10% aq Amyl Acetate Amyl Alcohol Aniline, Aniline Oil Aniline Dyes Asphalt, < 200°F ASTM #1 ASTM #2	E C U C G		G E U C C G U U U C C U U	G G G G E G U G E E	EEGEEUEU				E U E E G E E G E		U U E E U C C E E	GGEEUEEEE
ACCESSORIES & Assembly instructions	ASTM #3 Automatic Trans. Fluid ² Barium Chloride, 10% aq Barium Hydroxide, 105 aq Barium Sulfide, 10% aq Benzene, Benzol Benzoic Acid Benzyl Alcohol Black Sulfate Liquor Blast Furnace Gas	EEEEGUEGUEGUEGUEGUECGEEEEEDiesel Oil 2 EECCEEEEECUGGGGDiethylamineEGCEEEEGGUUDioctyl Phthalate (DOP)EECCUGGGUDowtherm A&EJEUUUUUUCGEEthyl Alcohol (Ethanol)JECUUUUUCCEEthyl Alcohol (Ethanol)JECUUUUUCCCEEEJEUUUUCCCCEEEEEEEEEEEEECCC <th></th> <th>- C - C - C - C - U U</th> <th>U G U C G U E G U U U U U U U U</th> <th>U E G U U E U U G U</th> <th>U G U G G U U G U U U E E U G U U G G U U</th> <th>U – C E U G E C C U G E C C U C U C U C U</th> <th></th> <th>GEEEGEEEEE</th> <th>G E E E E E E G G E</th> <th>G E – E E G E G G G</th> <th>GEEEEEEGG</th>		- C - C - C - C - U U	U G U C G U E G U U U U U U U U	U E G U U E U U G U	U G U G G U U G U U U E E U G U U G G U U	U – C E U G E C C U G E C C U C U C U C U		GEEEGEEEEE	G E E E E E E G G E	G E – E E G E G G G	GEEEEEEGG
HOSE ASSEMBLY EQUIPMENT	Borax, 10% aq Boric Acid, 10% aq Brine Bromine, Dry Butane ¹ Butyl Acetate Butyl Alcohol Butyl Alcohol	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U C C C C U G	U G E E E E E U C E H	UEEEGCCE				GUUUUEUE		G E U U G C E	G E U U U G C E
	Butylene (Butene) ¹	C = -C $U = U = U = U = U = U = U = U = U = U$		_	U G C G	G	GG	U U E U	-	U	66 - G	G C	G
APPENDICIES	Butyl Stearate Butyraldehyde Calcium Acetate, 10% aq Calcium Bisulfate, 10% aq Calcium Chloride, 10% aq This chart is intended for reference use only	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IC I IC I IC I IC I IC I IC I IC I IC I	E G E - C	G U C U E E U E E E	E G E G E	CU GU EE GE EE	E E E E E G E – E E	E E E	E E U E	E E E E G E U E E E	E G U E	E E U E

The information in this chart pertains strictly to material compatibility and is not intended to be used as an application guide. For information on specific applications not included in this catalog, please contact Eaton Aeroquip.

*Viton is a E.I. DuPont trademark. Note ¹ - Rubber-covered hose must be perforated to allow gas to escape. Note ² - Due to the widely different additives in these fluids, testing should be done on the actual fluid being considered.

Compatibility																											- LTY & Hose
E = EXCELLENT			astic Elastomer	pplication Hose							Steel	_		E = EXCELLENT		i	astic Elastomer	Application Hose		6					s Steel	E	SPECIA
G = GOOD C = CONDITIONAL U = UNSATISFACTORY	Nitrile	PTFE	Thermopli	Special A EPDM	Buna-N	Neoprene	Viton*	Urethane	Hytrel	Drace	Stainless	Aluminun	Monel	G = GOOD C = CONDITIONAL U = UNSATISFACTORY	Nitrile	PTFE	Thermopl AOP	Special A	Buna-N	Neopren	EPR Viton*	Urethane	Hytrel	Steel	Brass Stainless	Aluminur Monel	N N
FLUID	1	2 H	3 4 IOSE	56		S	EALS				MET	AL		FLUID	1	2 H	3 4 OSE	56		:	SEAL	s			MET	AL.	
Heptane	E	E	ΕC	; U	E	Gl	JE	G	G	EE	Ē	E	E	Natural Gas ¹	L	PG A	ppro	ved	E	Ε	UE	-	-	G	GG	GG	V & N SSUR
Hexaldenyde Hexane	E	E	-ι ΕΕ) E E U	E	Gl	JE	G	- (G I	U E E	2 E	E	E	Nickel Acetate, 10% aq	G	С	UG	E	c	С	ΕG	iU	U	G	СE	GΕ	LOV PRE
Hydraulic Oils ² Estor Blond		F	r r		F					C 1		F	F	Nickel Chloride, 10% aq	E	E	UE	E	E	G	EE	U	U	U	UG	UG	
Phos. Ester/Petroleum Blend	υ	Ē		JŪ	Ū	υι	ĴĈ	U	Ğ	EE	Ē	Ē	Ē	Nitric Acid, to 10%		E	U U	G		Ū	UE	U	c	U	UE	00	
Silicone Oils Straight Petroleum Base	E	E F	EE	E E	E	EE	E	E F	E I F I	E E F F	EEF	E	E F	Nitric Acid, over 10%	U	C	UU	U	U	U	UG	U	U	U	UE	ΟU	HOSE
Straight Phosphate Ester	Ū	Ē		j E	Ū	Ŭ	È	Ū	G	E	Ē	Ē	Ē	Nitrobenzene Nitrogen¹		E F	U U F F	E F		U F	UG FF	iU F	U F	E F	G E F F	E E F F	
Water Glycol Water Petroleum Fmulsion	IE IF	E F	00 000	; E ; U	IE IF	EE	E	C C		E E C F	: E : F	G	E F	Octyl Alcohol	C	E	ΕU	Ū	E	E	EE	Ē	E	E	ΕE	ΕE	ESSI
Hydrobromic Acid	Ū	Ē	ŬĒ	Ğ	Ū	Ŭ	Ē	Ŭ	Ŭ	Ē	J E	Ĕ	Ū	Oleic Acid	G	Е	GU	U	U	U	CG	G	E	С	EG	CG	H P
Hydrochloric Acid, Cold Hydrocvanic Acid		E	υι - ι	JG JE			i E E E	U _	ין ט _ ו	U U E E) U E G	U E	U G	(Funning Sunuric Acia) Oleum	U	Е	บบ	U	E	G	υe	G	G	Е	ΕE	ΕE	≌
Hydrofluoric Acid	Ŭ	E	υŪ	U U	U	Ú (: U	U	וט	Ul	JŪ	U	Ċ	Ortho-Dichlorobenzene	U	E	- U	U	U	U	UE	_	-	G	GG	GG	
Hydrogen¹	G	E C	- 6 C 6	i G	E	EE	: E : E	E	= ' E I	EE	5 U E E	E	E	Uxalic Acid, 10% aq Oxygen ¹		E U	СС И И	6 E 1 F	G	G	E E 	: C		U G	СС 6 6		
Hydrogen Peroxide	C	E	Ge	i G	G	G (6 E	G	G		JG	E	U	Palmitic Acid	E	Ē	ΕE	G	E	G	GΕ	-	Е	G	– E	GG	INGS
Isocyanate	U	E	υι	JŪ	U	U (5 E	U		G -	- G	- -	-	Para-Dichlorobenzene	U	E	– U	U		U	UE	-	_	G	GG	GG	1
Iso Octane Isopropyl Acetate	G	E	EO	i U I C	E	Gl	JE	G		E E	EE	E	E	Pentane		Но	se Or	nly		Е	0 6	0	6	G	6 6	ĽŬ	HOSE
Isopropyl Alcohol	G	Ē	C	E E	G	GE	ĒĒ	Ŭ	č li	E	Ē	G	Ē	Perchloric Acid	U	E	U U	G	E	G	GE	U	U	U	UU		-
Isopropyl Ether .IP-4IP-5	G	E F	– C G F	; U : U	G		J U J F	C U	– (G	G (F F	3 G = F	F	F	Petroleum Base Oils	G	E	ΕE	U	E	G	UE	E	E	E	EE	EE	
Kerosene	G	Ē	GE	Ŭ	E	υı	ĴĒ	Ŭ	G	E	Ē	Ē	Ē	Phenol (Carbolic Acid)	U	E	UU	U	U	U	GE	U	U	Ū	ΕE	ΕG	
Lacquer/Lacquer Solvents		E	υι Cι	JU JE	U	U U E E	JU	U C	G I C I	υE Gl	: E JG	Е —		Phosphate Ester ² Phosphoric Acid 20%		E F	С U U U	E F		U	GU GF	; U : U	GU	E U	E E F U	E E C F	NGS 8
Linseed Oil	Ē	Ē	ĢĢ	i Ū	E	Gl	JE	G	G	Ē	Ē	E	Ē	Phosphorous Trichloride	U	Ē	UU	E	U	Ŭ	ΕE	Ū	Ŭ	Č	ŪČ	ΕE	ERS
LPG'		Ho	App se Oi	roved nly	E	Gl	JE	_	-	E	: E	E	E	Potassium Acetate, 10% aq	G	E	- G	E	G	G	EU) _ . c	-	C	GC	UG	DAP
Lubricating Oils ²	S	ee Hy F	ydrau	lic Oils	S	ee Hy	drauli : ⊑	c Oils	s S C I	Seel	Hydra	aulic C	Oils C	Potassium Cyanide, 10% aq	E	E	EG	E	E	E	EE	E	E	C	UG		⋖≓
Magnesium Hydroxide, 10% aq	G	Ē		ÈÈ	G	GE	Ē	C	č	E (5 E	G	G	Potassium Dichromate, 10% aq	E	E	ΕE	E	E	Ε	EE	E	E	С	СC	CC	
Magnesium Sulfate, 10% aq	E	E	CE	E E	E	EE	E	C C		EE	E	E	E	Potassium Hydroxide, to 10% Potassium Hydroxide, over 10%	G	E F	СС ПС	F	G	G	E G F H	і С I П	C II	G	66 66	UE	ş
Maleic Anhydride	Ŭ	Ē	Cι	j C	Ŭ	ΰl	ĴĒ	Č	č	Gι	JE	G	Ē	Potassium Nitrate, 10% aq	E	E	E E	E	E	Ē	EE	E	Ē	G	GΕ	G –	I DE
Malic Acid Mercuric Chloride	G	E F	- 0 F 0	1 U 1 G	G	GU	JG	F	- F	ม - ม เ	- E J U	GU	E U	Potassium Sulfate, 10% aq	E	E	EE	E	E	Е	ΕE	E	E	- -	 	 	S & SIRU
Mercury	Ē	Ē	ĒĒ	Ē	Ē	ĒĒ	Ē	Ē	Ē	Ē	ĴĒ	Ŭ	Ğ	Propane [®] (Liquified)		Но	se Or	nly	ľ	_			_	Е	C C	с с	
Methanol Methyl Bromide		E	UL	: E JU	G	G E U L	: U JE	U U		G U E E	i E E G	U	E	Propyl Acetate		E	- U	G		U	GU	_ : 11	_	E	– E c c	EE	EMB
Methyl Chloride	U	E	υL	J Ū	U	Ul	JE	U	Ŭ	EE	Ē	U	G	Propylene	U	E	– U	U	U	Ŭ	UE	. U	_	E	ΕE	EE	ACC
Methyl Ethyl Ketone	U	E	υι υι) E J E	U		ĒŪ	ւ Ս		E E G (: E 3 G	G	G	Refrigerant R-12 ¹	E	_	GG	C	G	E	CE	E	E	E	ΕE	ΕE	
Methylene Chloride	U	E	υι	JU	U	υι	JG	U	U	GO	G	G	G	Refrigerant R-13 ¹ Refrigerant R-22 ¹		– C	GG UU	G F	G	E F	СЕ	: E II		E F	E E F F	EEFF	,
Methyl Isopropyl Ketone	U	E	UC) E ; E	U	Ul	, 0 , 0	U		ы (G (5 G	G	G	Refrigerant R-134a ¹	C	C	U U	E	E	C	υu	Ū	Ē	E	ΕE	ΕE	
Methyl Salicylate	U	E	– l	J C	U	00	; U	 	-	E	6 G	Е	G	Sewage	G	E	EG	E	E	E	EE	U	E	G	GG	GG	ASSE
MIL-H-5606	Ē	Ē	EE	U U	E	Gl	JE	Ē	E	EE	E E	E	Ē	Sincone ons Soap (Water Solutions)	E	E	c u C E	E		E	EE	E E C	Ċ	E	ЕЕ	UE	OSE
MIL-H-6083	E	E	EE	U	E	Εl	JE	E	E	EE	E	-	Е	Sodium Acetate, 10% aq	G	U	- G	E	G	G	ΕU	_	_	Е	EG	ΕE	= "
MIL-L-23699	E	Ē	- 6	, U	G	Ul	, c J E	_	-	EE	ĒĒ	E	E	Sodium Bicarbonate, 10% aq	E	Ē	E E F F	E	E	E	EE	E	E	G F	GE	GE G-	
MIL-H-46170 MIL-H-83282	G	E	- 0 _ 0	6 C	E	Gl	JE		-	EE	E	_	E	Sodium Carbonate, 10% aq	E	E	EE	E	E	Ē	EE	E	E	E	GE	U E	
Mineral Oils	E	Ē	GE	U	Ē	Gl	ĴĒ	G	G	EE	ĒĒ	E	Ē	Sodium Chloride, 10% aq	E	E	EG	E	E	E	EE	E	E	U	сç	CE	ES
Naphtha Nanhthalene	C	E F	GE	E U I II	C	U U	JE	C C	G - G -	– –	 ; F	_ _	- G	Sodium Cyanide, 10% aq Sodium Hydroxide to 10%		E F	ЕĒ GC	F		E G	EF	E G	E G	e C	— Մ 6 Ը	UUUU	DICI
Naphthenic Acid	ΙŰ	Ē	– L	, U	C	υι	J E	_	_ .	- (E E	G	G	Sodium Hydroxide, over 10%	lυ	E	C U	E	ΙŰ	U	GE	C	c	C	C C	U C	PPEN

This chart is intended for reference use only

The information in this chart pertains strictly to material compatibility and is not intended to be used as an application guide. For information on specific applications not included in this catalog, please contact Eaton Aeroquip.

*Viton is a E.I. DuPont trademark.

Note 1 - Rubber-covered hose must be perforated to allow gas to escape. Note 2 - Due to the widely different additives in these fluids, testing should be done on the actual fluid being considered.

mí go																	
LOW & MEDIUM PRESSURE HOSE	E = EXCELLENT G = GOOD C = CONDITIONAL U = UNSATISFACTORY	Nitrile	PTFE	Thermoplastic Elastomer	AQP	Special Application Hose EPDM	Buna-N	Neoprene	EPR	Viton*	Urethane	Hytrel	Steel	Brass	Stainless Steel	Aluminum	Monel
	FLUID	1	2	3 Hos	4 E	56			SE/	ALS.				м	ETA	L	
HIGH PRESSURE HOSE	Sodium Hypochlorite, 10% aq Sodium Metaphosphate, 10% aq Sodium Nitrate, 10% aq Sodium Perborate, 10% aq Sodium Peroxide, 10% aq Sodium Phosphates, 10% aq Sodium Silicate, 10% aq	CEGGGEEE	EEEEEE	C E E E E E E	G E G G G G G G	G E E G E E E E	C E G G E E E	CEGGGEEE	EEEEEE		C E E U E E E E		UEECUUECO	U G C U U E E G .	UGECCGEG	U U E U C U E G	C G E C C E E G G
HOSE FITTINGS	Sodium Sulfide, 10% aq Sodium Thiosulfate, 10% aq Soy Bean Oil Stannic Chloride Steam ¹ (up to 388°F) Stearic Acid Stoddard Solvent Styrene Sulfur, Slurry	LGEGUGGUC		EGCUGUUG	GCGUGEUE	E U E G U U E	E E E U G E U U U	EGGUGGUE	EUECGUUE	LEEECEEGE	EGCUGUUG	LEGCUGUUG	UEUECEEE	UUEUECEEU	CEUEEEEG	UGEUGCEEE	GEEUEEEEE
ADAPTERS & TUBE FITTINGS	Sulfur Chloride, Wet Sulfur Dioxide, Dry Sulfur Trioxide Sulfuric Acid, to 10% Sulfuric Acid, over 10% Sulfurous Acid Tannic Acid Tar (Bituminous) Tartaric Acid	U U U U U U G G E	EEEEEEEE		U U U U G G E	U E C E U G E U G	U U U U U C G G E	U U U G U C E U G	U G G U U U E U G	EEEEGGEEE			GEGUCUEEU	- G C G C C E G C	G G G C C C E E C	GEG-UCCEE	U G G E C U E E E
ACCESSORIES & ASSEMBLY INSTRUCTIONS	Tertiary Butyl Alcohol Titanium Tetrachloride Toluene (Toluol) Trichlorethylene Tricresyl Phosphate Triethanolamine Tung Oil Turpentine	GUUUUGEEC		$\begin{array}{c} G \\ - \\ U \\ U \\ U \\ U \\ U \\ C \\ G \\ G \end{array}$		G U U U E U U	G C U U U E G G G	G U U U U U U G U U	G U U U E E U U U	EEEEGUEEE	G – U U U U U G G	G – U U U U C G G	GEEEEEGE	GUEG-UGGG	GGEECEEGE	GUEE-EEGE	G E E G E E G E E G E
HOSE ASSEMBLY EQUIPMENT	Vinyl Chloride Water (to +150°F) Water (+151°F to +200°F) Water (+201°F to +350°F) Water Glycol Water Petroleum Emulsion ² Xylene Zinc Chloride, 10% aq Zinc Sulfate, 10% aq	UECUEEUEE		UEUUCCCE -	UCUUECUEE	U E E E U U E E		UEEUEGUEE	UEEGEUUEE	EEEGEEEEE	U E U U C C U E -	JUEUUCCCE -		U G G G E E E U C			LEEEEGGG

Hydraulic fluids & lubricating oils

The following is a representative list of fluids and manufacturers. The fluids are grouped under generic "family" heads and arranged alphabetically. For each generic "family" listing we have included maximum fluid temperature recommendations for the four hose classifications on page 349 (1 through 4). Two maximum fluid temperature ratings are listed under designations of "H" and "LP".

The "H" designation is for hydraulic service up to the maximum rated operating pressure of any particular hose in the classification. The "LP" designation is for low-pressure service such as lubricating oil systems or low-pressure hydraulic return lines.

The letter "U" in the box indicates unsatisfactory resistance to the fluid type.

Fluid temperature ratings are predicated on maximum allowable ambient temperatures as follows:

Classifications 1 and 3

(Synthetic Rubber and Thermoplastic Elastomer)

"H" fluid temp. ratings: +140°F ambient

"LP" fluid temp. ratings: +180°F ambient

Classification 2 (PTFE)

"H" fluid temp. ratings: +400°F ambient

"LP" fluid temp ratings: +400°F ambient

Classification 4 (AQP)

- "H" fluid temp. ratings: +160°F ambient
- "LP" fluid temp. ratings: +250°F ambient

(If "H" fluid temperature is +225°F or less, allowable ambient temperature may be increased to +200°F)

Ambient temperatures in excess of those recommended, in conjunction with maximum fluid temperatures, can materially shorten the service life of the hose.

CAUTION: The fluid manufacturer's recommended maximum operating temperature for any specific namebrand fluid should be scrupulously observed by the user. These recommended temperatures can vary widely between name brands of different fluid compositions, even though they fall into the same generic "family" of fluids.

Exceeding the manufacturer's recommended maximum temperature can result in fluid breakdown, producing by-products that are harmful to elastomeric products, as well as other materials in the system. If a manufacturer's recommended maximum temperature for his specific fluid is lower than that for the hose rating, it should take precedence over the hose rating for service usage.

This chart is intended for reference use only

The information in this chart pertains strictly to material compatibility and is not intended to be used as an application guide. For information on specific applications not included in this catalog, please contact Eaton Aeroquip.

*Viton is a E.I. DuPont trademark.

Note 1 - Rubber-covered hose must be perforated to allow gas to escape.

Note² - Due to the widely different additives in these fluids, testing should be done on the actual fluid being considered.

STRAIGHT PETROLEUM-BASE

Maximum fluid temperature recommendation**

HOSE CLASSIFICATIONS (SEE P. 349) 1 2 3 4

H +200°F +400°F +200°F +300°F LP +250°F +450°F +200°F +300°F

Fluid Name

Aircraft Hydraulic Oil AA Ambrex Oils Arco A.T.F. Dexron Arco A.T.F. Type F Arco Fleet Motor Arco H.T.F. C-2 Fluid Arco H.T.C. 100 Fluid Arco 303 Fluid ATF Special Automatic Transmission Fluid (Dexron)

Carnea Oils **Citgo Amplex** Citgo ATF, Type F Citgo ATF, Dexron Citgo Extra Duty Circulating Oils Mineral Oil (Heavy Duty) (R & O) Citgo Motor Oils **Citgo Pacemaker Series** Mineral Oil (R & O) Citgo Pacemaker T Series Mineral Oil (R & O) Citgo Pacemaker XD Series Mineral Oil (Heavy Duty) (R & O) Citgo Sentry Citgo Tractor Hydraulic Fluid Conoco 303 Fluid Custom Motor Oil

Dectol R & O Oils Delo 400 Motor Oils Delvac Oils Delvac SHC Delvac Special 10W-30 Donax T Oils DTE Oils Duro Duro AW EP Hydraulic Oils EP Industrial Oils EP Machine Oils Energol HL68 Energol HLP C68 Etna Oils Exxon ATF

Factovis 52 – Conventional R & O Hydraulic Fluid

Gulf Harmony AW Gulf Security AW Glide

Hulburt 27 Series Hydraulic Series Hydraulic Oils Hydroil Series

Industron 53 – Anti Wear Hydraulic Fluid

Lubrite Motor 20W-40

Mobil AFT 210 Mobil AFT 220 Mobilfluid 62 Mobilfluid 423 Mobil Hydraulic Oils Mobiloil Special Mobiloil Super 10W-40

NUTO Oils

OC Turbine Oils

Peaco Oils Pennbell Oils Power-Tran Fluid

Quadroil Series

Rando Oils Rando Oils HD Redind Oils Regal Oils R & O Rimula Oils Rotella Oils Rotella T Oils RPM Delo 200 Motor Oils RPM Delo 300 Motor Oils RPM Delo Special Motor Oils Rubilene

Shell Brand Special Motor Oils Sun R & O Oils Suntac HP Oils Suntac WR Oils Sunvis 700 Oils Sunvis 800 Oils Sunvis 900 Oils Super Hydraulic Oils Supreme Motor Oils

Tellus Oils Teresstic Oils Torque Fluids Torque Fluid 47 Torque Fluid 56 Tractor Hydraulic Fluid

Union ATF Dexron Union ATF Type F Union C-2 Fluid Union C-P Oil Union Custom Motor Oil Union Gas Engine Oil Union Guardol Motor Oil Union Heavy Duty Motor Oil Union Hydraulic Oil AW Union Hydraulic Tractor Fluid Union Premium Motor Oil Union S-1 Motor Oil Union Special Motor Oil Union Super Motor Oil Union Torque Correction Fluid Union Turbine Oil Union Turbine Oil XD Union Unax Union Unax AW Union Unax R & O Union Unax RX Union Unitec Motor Oil Univis J13 Univis J26 Univis P32

Vactra Oils Vitrea Oils

Way Lubricants

XD-3 Motor Oils

LOW & MEDIUM Pressure hose

WATER AND PETROLEUM OIL EMULSION (FR)

Maximum fluid temperature recommendation**

Fluid Name

Fluid Name Aqualube Astrol #587

SPECIALTY & TRUCK HOSE

LOW & MEDIUM PRESSURE HOSE

HIGH PRESSURE HOSE

HOSE FITTINGS

ADAPTERS & TUBE FITTINGS

ACCESSORIES & ASSEMBLY INSTRUCTIONS Chevron FR Fluid D Chrysler L-705 Citgo Pacemaker Invert FR Fluid Conoco FR Hydraulic Fluid

Dasco IFR Duro FR-HD

Fire Resistant Hydrafluid Fire Resistant Hydraulic Fluid B FR 3110 Hydraulic Fluid (invert) Fyre-Safe W/O

Gulf R & D FR Fluid

Houghto-Safe 5046 Houghto-Safe 5046W Hulsafe 500 Hy-Chock Oil Hydrasol A

Ironsides #814-A Irus Fluid 905

Kutwell 40

Masol Fire Resistant Fluid Meltran FR 900 Mine Guard Mobilmet S122 Penn Drake Hydraqua Fluid Permamul FR Puro FR Fluid Pyrogard C Pyrogard D

Quintolubric 957 Series Quintolubric 958 Series

Regent Hydrolube #670

SAFOIL Hydraulic Fluid Anti-Wear Sinclair Duro FR-HD Solvac 1535G Staysol FR Sunsafe F

Union FR Fluid Union Soluble Oil HD

Veedol Auburn FRH Veedol Auburn FRH Concentrate

**See CAUTION on page 349 for maximum fluid temperatures and limiting ambient temperatures.

WATER AND GLYCOL SOLUTION

Maximum fluid temperature recommendation**

HOSE CLASSIFICATIONS (SEE P. 349)

		~	J	-
Н	+200°F	+250°F	+150°F	С
LP	+200°F	+250°F	+150°F	С

Fluid Name

Chem-Trend HF-18 Chem-Trend HF-20 Chevron Glycol FR Fluids Citgo Glycol FR Fluids Citgo Glycol FR-20 XD Citgo Pacemaker

Dasco FR 150 Dasco FR 200 Dasco FR 200 B Dasco FR 310

Fyrguard 150 Fyrguard 200 Fyre-Safe 225

Gulf FR Fluid G-200 Gulf FR Fluid – G Series

Houghto-Safe 271 Houghto-Safe 416 Houghto-Safe 520 Houghto-Safe 525 Houghto-Safe 616 Houghto-Safe 620 Houghto-Safe 625 Houghto-Safe 620 Hydra Safe 625 Hydraulic Safety Fluid 200 Hydraulic Safety Fluid 300 Hyspin AF-1 Hyspin AF-2 Hyspin AF-3 Maxmul Maxmul FR Melsyn 200 Melsyn Glycol FR

Nyvac FR Fluid Nyvac FR 200 Fluid Nyvac 20 (WG) Nyvac 30 (WG)

Park Water Glycol Hydraulic Fluid Pennzoil Fluid FR 2X

Quintolubric 700 Series

Santosafe W/G 15 Santosafe W/G 20 Santosafe W/G 30 Standard Glycol FR #15 Standard Glycol FR #20 Standard Glycol FR #25

Ucon Hydrolube 150 CP Ucon Hydrolube 200 CP Ucon Hydrolube 275 CP Ucon Hydrolube 300 CP Ucon Hydrolube 550 CP Ucon Hydrolube 900 CP Ucon Hydrolube 150 DB Ucon Hydrolube 275 DB Ucon Hydrolube 150 LT Ucon Hydrolube 200 LT

Ucon Hydrolube 275 LT Ucon Hydrolube 300 LT Ucon M-1 Ucon Hydrolube 200 NM Ucon Hydrolube 300 NM

HOSE ASSEMBLY Equipment

354

STRAIGHT PHOSPHATE-ESTER (FR)

Maximum fluid temperature recommendation**

HOSE	CLAS	SIFICATIONS	(SI	EE P. 349)
	1	2	3	4

Н	U	+400°F	+200°F	U
LP	U	+400°F	+200°F	U

Fluid Name FR Fluids

Fyrquel 90 Fyrquel 150 Fyrquel 220 Fyrquel 300 Fyrquel 550 Fyrquel 150 R & O Fyrquel 150 R & O Fyrquel 220 R & O Gulf FR Fluid P-37 Gulf FR Fluid P-47 Gulf FR Fluid P-43 Gulf FR Fluid P-45 Gulf FR Fluid P-47 Houghto-Safe 1010

Houghto-Safe 1055 Houghto-Safe 1115 Houghto-Safe 1120 Houghto-Safe 1130

Pyrogard 51 Pyrogard 53 Pyrogard 55

Safetytex 215

Skydraul 500A Skydraul 7000

Univis P12

ESTER BLEND TURBINE OILS

Maximum fluid temperature recommendation**

HOS		IFICATIO	NS (SEE	P. 349)
	1	2	3	4
Н	-	-	-	-
LP	+250°F	+450°F	+200°F	+300°F

Fluid Name

Stauffer Jet I Stauffer Jet II

SILICONE OILS

Maximum fluid temperature recommendation**

HOSE	CLAS	SIFICATIONS	(SEE	P. 349)
	1	2	3	4

	-		-	-
Н	+200°F	+400°F	+200°F	+300°F
LP	+250°F	+450°F	+200°F	+300°F

Fluid Name

Dow Corning 200 Fluid (100CS) Dow Corning QF1-2023 Dow Corning 4-3600 Dow Corning 3-3672

POLYOL-ESTER

Maximum fluid temperature recommendation**

но	SE CLASS	IFICATIO	NS (SEE	P. 349)
_	1	2	3	4
	000°F	400°F		005°5

1	+200°F	+400°F	-	+225°F	
P	+200°F	+400°F	-	+250°F	

Fluid Name

Quintolubric 822 Series

**See NOTE on page 349 for maximum fluid temperatures and limiting ambient temperatures.

LUBRICANT COMPATIBILITY CHART

Hose Style								
Lubricant	FC802	FC505	FC555	FC558	GH134	FC665	FC765	
Mineral Oil	Y	Y	Y	Ν	Ν	Y	Y	
PAG	Y	Y	Y	Y	Y	Y	Y	
Ester Oil	Y	Y	Y	Y	Y	Y	Y	
Alkylbenzene	Y	Y	Y	Ν	Ν	Y	Y	
Y = Compatible								

N = Non-compatible

LOW & MEDIUM Pressure hose

HIGH PRESSURE HOSE

HOSE FITTINGS

SAE Recomended Practices

Selection, installation and maintenance of hose and assemblies – SAE J1273 October 1996

The following recommendations on selection, installation and maintenance of hose assemblies was established by the S.A.E. in 1991. Please read these general instructions carefully. More detailed information on many of these subjects is covered in this

catalog.
1. Scope—Hose (also includes hose assemblies) has a finite life and there are a number of factors which will

This recommended practice is intended as a guide to assist system designers and/or users in the selection, installation, and maintenance of hose. The designers and users must make a systematic review of each application and then select, install, and maintain the hose to fulfill the requirements of the application. The following are general guidelines and are not necessarily a complete list.

WARNING: IMPROPER SELECTION, INSTALLATION, OR MAINTENANCE MAY RESULT IN PREMATURE FAIL-URES, BODILY INJURY, OR PROP-ERTY DAMAGE.

2. References

reduce its life.

2.1 Applicable Documents—The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply.

2.1.1 SAE PUBLICATIONS—Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

J516—Hydraulic Hose Fittings

J517—Hydraulic Hose

3. Selection—The following is a list of factors which must be considered before final hose selection can be made.

3.1 Pressure—After determining the system pressure, hose selection must be made so that the recommended maximum operating pressure is equal to or greater than the system pressure. Surge pressures higher than the maximum operating pressure will shorten hose life and must be taken into account by the hydraulic designer.

3.2 Suction—Hoses used for suction applications must be selected to insure the hose will withstand the negative pressure of the system.

3.3 Temperature—Care must be taken to insure that fluid and ambient temperatures, both static and transient, do not exceed the limitations of the hose. Special care must be taken when routing near hot manifolds.

3.4 Fluid Compatibility—Hose selection must assure compatibility of the hose tube, cover and fittings with the fluid used. Additional caution must be observed in hose selection for gaseous applications.

3.5 Size—Transmission of power by means of pressurized fluid varies with pressure and rate of flow. The size of the components must be adequate to keep pressure losses to a minimum and avoid damage to the hose due to heat generation or excessive turbulence.

3.6 Routing—Attention must be given to optimum routing to minimize inherent problems.

3.7 Environment—Care must be taken to insure that the hose and fittings are either compatible with or protected from the environment to which they are exposed. Environmental conditions such as ultraviolet light, ozone, salt water, chemicals, and air pollutants can cause degradation and premature failure and, therefore, must be considered.

3.8 Mechanical Loads—External forces can significantly reduce hose life. Mechanical loads which must be considered include excessive flexing, twist, kinking, tensile or side loads, bend radius, and vibration. Use of swivel-type fittings or adapters may be required to insure no twist is put into the hose. Unusual applications may require special testing prior to hose selection.

3.9 Abrasion—While hose is designed with a reasonable level of abrasion resistance, care must be taken to protect the hose from excessive abrasion which can result in erosion, snagging and cutting of the hose cover. Exposure of the reinforcement will significantly accelerate hose failure.

3.10 Proper End Fitting—Care must be taken to insure proper compatibility exists between the hose and coupling selected based on the manufacturer's recommendations substantiated by testing to industry standards such as SAE J517. End fitting components from one manufacturer are usually not compatible with end fitting components supplied by another manufacturer (i.e., using a hose fitting nipple from one manufacturer with a hose socket from another manufacturer). It is the responsibility of the fabricator to consult the manufacturer's written instructions or the manufacturer directly for proper end fitting componentry.

3.11 Length—When establishing proper hose length, motion absorption, hose length changes due to pressure, as well as hose and machine tolerances must be considered.

3.12 Specifications and

Standards—When selecting hose, government, industry and manufacturers' specifications and recommendations must be reviewed as applicable.

3.13 Hose Cleanliness—Hose components vary in cleanliness levels. Care must be taken to insure that the assemblies selected have an adequate level of cleanliness for the application.

3.14 Electrical Conductivity—Certain applications require that hose be non-conductive to prevent electrical current flow. Other applications require the hose to be sufficiently conductive to drain off static electricity. Hose and fittings must be chosen with these needs in mind.

4. Installation—After selection of proper hose, the following factors must be considered by the installer.

4.1 Pre-Installation Inspection—

Prior to installation, a careful examination of the hose must be performed. All components must be checked for correct style, size and length. In addition, the hose must be examined for cleanliness, I.D. obstructions, blisters, loose cover, or any other visible defects.

4.2 Follow Manufacturers' Assembly Instructions—Hose

assemblies may be fabricated by the manufacturer, an agent for or customer of the manufacturer, or by the user. Fabrication of permanently attached fittings to hydraulic hose requires specialized assembly equipment. Field-attachable fittings (screw style and segment clamp style) can usually be assembled without specialized equipment although many manufacturers provide equipment to assist in the operation.

SAE J517 hose from one manufacturer is usually not compatible with SAE J516 fittings supplied by another manufacturer. It is the responsibility of the fabricator to consult the manufacturer's written assembly instructions or the manufacturers directly before intermixing hose and fittings from two manufacturers. Similarly, assembly equipment from one manufacturer is usually not interchangeable with that of another manufacturer. It is the responsibility of the fabricator to consult the manufacturer's written instructions or the manufacturer directly for proper assembly equipment. Always follow the manufacturer's instructions for proper preparation and fabrication of hose assemblies.

4.3 Minimum Bend Radius-

Installation at less than minimum bend radius may significantly reduce hose life. Particular attention must be given to preclude sharp bending at the hose/fitting juncture.

4.4 Twist Angle and Orientation— Hose installations must be such that

relative motion of machine components produces bending of the hose rather than twisting.

4.5 Securement—In many applications, it may be necessary to

restrain, protect, or guide the hose to protect it from damage by unnecessary flexing, pressure surges, and contact with other mechanical components. Care must be taken to insure such restraints do not introduce additional stress or wear points.

4.6 Proper Connection of Ports— Proper physical installation of the hose requires a correctly installed port connection while insuring that no twist or torque is put into the hose. 4.7 Avoid External Damage—Proper installation is not complete without insuring that tensile loads, side loads, kinking, flattening, potential abrasion, thread damage, or damage to sealing surfaces are corrected or eliminated.

4.8 System Check Out—After completing the installation, all air entrapment must be eliminated and the system pressurized to the maximum system pressure and checked for proper function and freedom from leaks.

NOTE: Avoid potential hazardous areas while testing.

5. Maintenance—Even with proper selection and installation, hose life may be significantly reduced without a continuing maintenance program. Frequency should be determined by the severity of the application and risk potential. A maintenance program should include the following as a minimum.

5.1 Hose Storage—Hose products in storage can be affected adversely by temperature, humidity, ozone, sunlight, oils, solvents, corrosive liquids and fumes, insects, rodents and radioactive materials. Storage areas should be relatively cool and dark and free of dust, dirt, dampness and mildew.

5.2 Visual Inspection—Any of the following conditions requires replacement of the hose:

- (a) Leaks at fitting or in hose (leaking fluid is a fire hazard)
- (b) Damaged, cut, or abraded cover (any reinforcement exposed)
- (c) Kinked, crushed, flattened, or twisted hose
- (d) Hard, stiff, heat cracked or charred hose
- (e) Blistered, soft, degraded, or loose cover
- (f) Cracked, damaged, or badly corroded fittings
- (g) Fitting slippage on hose

5.3 Visual Inspection—The following items must be tightened, repaired, or replaced as required:

- (a) Leaking port conditions
- (b) Clamps, guards, shields

any air entrapment

- (c) Remove excessive dirt buildup
- (d) System fluid level, fluid type, and

5.4 Functional Test—Operate the system at maximum operating pressure and check for possible malfunctions and freedom from leaks.

NOTE: Avoid potential hazardous areas while testing.

5.5 Replacement Intervals—Specific replacement intervals must be considered based on previous service life, government or industry recommendations, or when failures could result in unacceptable down time, damage, or injury risk.

HOSE FITTINGS

ACCESSORIES & Assembly instructions

EQUIPMENT

APPENDICIES

SPECIALTY & TRUCK HOSE

LOW & MEDIUM PRESSURE HOSE 90

80

70

60

Flow capacities of hose assemblies at suggested flow velocities

The chart below is designed and provided as an aid in the determination of the correct hose size.

Example: At 13 U.S. gallons per minute, what is proper hose size within the suggested velocity range for pressure lines?

Solution: Locate 13 U.S. gallons per minute in the left hand column and 10 feet per second in the right hand column (the center of the suggested velocity range for pressure lines). Lay a straightedge across the two points. The inside diameter is shown in the center column nearest the straight edge.

For suction hose, follow the same procedure except use suggested velocity range for pump inlet lines in the right hand column.

Based on Formula

AREA (SQ. IN.) =
$$\frac{\text{G.P.M. x 0.3208}}{\text{VELOCITY (FT./SEC.)}}$$

*Suggestions are for oils having a maximum viscosity of 315 S.S.U. at +100°F (+38°C) and operating at temperatures between +65°F and +155°F (+54°C to +69°C). Under certain conditions, velocities in pressure lines can be increased up to 25 feet per second. Contact Aeroquip with specific information on your application.

To convert U.S. gallons into Imperial gallons multiply U.S. gallons by 0.83267. Imperial gallons into U.S. gallons multiply Imperial gallons by 1.20095. U.S. gallons to litres multiply by 3.785. Litres to U.S. gallons, multiply by 0.2642.

ADAPTERS & Tube fittings

SPECIALTY & Truck Hose

> LOW & MEDIUM Pressure hose

> > **HIGH PRESSURE HOSE**

HOSE FITTINGS

HIGH PRESSURE HOSE

HOSE FITTINGS

HOSE ASSEMBLY Equipment

WRONG RIGHT Under pressure, a hose (However, excessive slack may change in length. in hose lines may cause Always provide some slack poor appearance.) in the hose to allow for this

At bends, provide sufficient hose so that it does not have a bend radius less than its recommended minimum bend radius. Too tight a bend may kink the hose and

restrict or stop the fluid flow. In many cases the proper use of adapters and hose fittings can eliminate tight bends or kinks.

In applications where there is considerable vibration or flexing, allow additional hose length. The metal hose fittings, of course, are not flexible, and proper installation protects metal parts from undue stress, and avoids kinks in the hose.

When 90° adapters were used, this assembly became neater-looking and easier to

inspect and maintain. It uses less hose, too!

twist in it, operating pressures tend to force it straight. This can loosen the

WRONG

shortening or elongation.

If a hose is installed with a

When hose lines pass near an exhaust manifold or other heat source, they should be insulated by a heat resistant boot. firesleeve or a metal baffle. In any application, brackets and clamps keep hoses in place and reduce abrasion.

For installations where abrasion to hose cover cannot be prevented with the use of clamps or brackets, a steel protective coil or abrasion resistant sleeve should be placed over the hose.

Analyzing Failures

Everyone in maintenance encounters hose failures. Normally, there is no problem. The hose is replaced and the equipment goes back in operation. Occasionally the failures come too frequently – the same equipment with the same problems keep popping up. At this point the task is to determine and correct the cause of these repeated failures.

Improper application

Beginning with the most obvious, the most common cause of hose failures – Improper Application – compare the hose specifications with the requirements of the application.

Pay particular attention to the following areas:

- 1. The maximum operating pressure of the hose.
- 2. The recommended temperature range of the hose.
- 3. Whether the hose is rated for vacuum service.
- 4. The fluid compatibility of the hose.

Check all of these areas against the requirements of the application. If they don't match up, you need to select another hose. It's a good idea at this point to call on your local hose distributor for assistance in selecting the proper hose. Eaton's distributors, for example, are well equipped to perform this service for you. Distributor personnel attend special training courses in hydraulics and hose application conducted by the company. Or, if your problem is particularly difficult, the distributor can call on the services of Eaton's

Field Engineering Staff. The company will send in a hose and hydraulic specialist to study the problem and come up with a solution.

Improper assembly and installation

The second major cause of premature hose failure is improper assembly and installation procedures. This can involve anything from using the wrong fitting on a hose, to poor routing of the hose.

Eaton provides excellent training material that you can use to combat this problem. A little time spent in training your maintenance people could pay big dividends in reduced downtime.

You can make use of the material available from Eaton to improve your hose assembly and installation techniques.

This material is available free from Eaton Corporation 14615 Lone Oak Road, Eden Prairie, MN 55344 USA, 952/937-9800.

External damage

External damage can range from abrasion and corrosion, to hose that is crushed by a lift truck. These are problems that can normally be solved simply once the cause is identified. The hose can be rerouted or clamped, or a fire sleeve or abrasion guard can be used.

In the case of corrosion, the answer may be as simple as changing to a hose with a more corrosion resistant cover or re-routing the hose to avoid the corrosive element.

Faulty equipment

Too frequent or premature hose failure can be the symptom of a malfunction in your equipment. This is a factor that should be considered since prompt corrective action can sometimes avoid serious and costly equipment breakdown. Reprints of an article on "Troubleshooting Hydraulic Systems," which tells you how to spot problems in a hydraulic system are available from Eaton.

Faulty hose

Occasionally a failure problem will lie in the hose itself. The most likely cause of a faulty rubber hose is old age. Check the lay line on the hose to determine the date of manufacture. (2Q99 means second quarter 1999.) The hose may have exceeded its recommended shelf life. If you suspect that the problem lies in the manufacture of the hose (and don't jump to this conclusion until you have exhausted the other possibilities) contact your distributor. Given effective quality control methods, the odds of a faulty batch of hose being released for sale are extremely small. So make sure that you haven't overlooked some other problem area.

Analyzing failures

A physical examination of the failed hose can often offer a clue to the cause of the failure. Following are 22 symptoms to look for along with the conditions that could cause them:

1. Symptom: The hose tube is very hard and has cracked.

Cause: Heat has a tendency to leach the plasticizers out of the tube. This is a material that gives the hose its flexibility or plasticity.

Aerated oil causes oxidation to occur in the tube. This reaction of oxygen on a rubber product will cause it to harden. Any combination of oxygen and heat will greatly accelerate the hardening of the hose tube. Cavitation occurring inside the tube would have the same effect.

2. Symptom: The hose is cracked both externally and internally but the elastomeric materials are soft and flexible at room temperature.

Cause: The probable reason is intense cold ambient conditions while the hose was flexed. Most standard hoses are rated to -40° F (-40° C). Some AQP hoses are rated at -55° F (-49° C). Military specified hoses are generally rated to -65° F (-54° C). PTFE hose is rated to -100° F (-73° C). Some Everflex Polyon thermoplastic hoses are rated at -65° F (-54° C).

ACCESSORIES & Assembly instructions

LOW & MEDIUM Pressure hose

HIGH PRESSURE HOSE

HOSE FITTINGS

SPECIALTY & Truck hose

LOW & MEDIUM PRESSURE HOSE

HIGH PRESSURE HOSE

HOSE FITTINGS

ADAPTERS & TUBE FITTINGS

ACCESSORIES & ASSEMBLY INSTRUCTIONS

HOSE ASSEMBLY Equipment **3. Symptom:** The hose has burst and examination of the wire reinforcement after stripping back the cover reveals random broken wires the entire length of the hose.

Cause: This would indicate a high frequency pressure impulse condition. SAE impulse test requirements for a double wire braid reinforcement are 200,000 cycles at 133% of recommended working pressure. The SAE impulse test requirements for a four spiral wrapped reinforcement (100R12) are 500,000 cycles at 133% maximum operating and at +250°F (121°C). If the extrapolated impulses in a system amount to over a million in a relatively short time a spiral reinforced hose would

4. Symptom: The hose has burst, but there is no indication of multiple broken wires the entire length of the hose. The hose may

be the better choice.

have burst in more than one place.

Cause: This would indicate that the pressure has exceeded the minimum burst strength of the hose. Either a stronger hose is needed or the hydraulic circuit has a malfunction which is causing unusually high pressure conditions.

5. Symptom: Hose has burst. An exam-ination indicates the the wire braid is rusted and the cover has been cut, abraded or deteriorated badly.

Cause: The primary function of the cover is to protect the reinforcement. Elements that may destroy or remove the hose covers are:

- 1. Abrasion
- 2. Cutting
- 3. Battery Acid
- 4. Steam Cleaners
- 5. Chemical Cleaning Solutions
- 6. Muriatic Acid (for cement clean-up)
- 7. Salt Water
- 8. Heat
- 9. Extreme Cold

Once the cover protection is gone the wire reinforcement is susceptible to attack from moisture or other corrosive matter.

6. Symptom: Hose has burst on the outside bend and appears to be elliptical in the bent section. In the case of a pump supply line, the pump is noisy and very hot. The exhaust line on the pump is hard and brittle.

Cause: Violation of the minimum bend radius is most likely the problem in both cases. Check the minimum bend radius and make sure that the application is within specifications. In the case of the pump supply line partial collapse of the hose is causing the pump to cavitate creating both noise and heat. This is a most serious situation and will result in catastrophic pump failure if not corrected.

7. Symptom: Hose

appears to be flattened out in one or two areas and appears to be kinked. It has burst in this area and also appears to be twisted.

Cause: Torquing of a hydraulic control hose will tear loose the reinforcement layers and allow the hose to burst through the enlarged gaps between the braided plaits of wire strands. Use swivel fittings or joints to be sure there is no twisting force on a hydraulic hose.

8. Symptom: Hose type has broken loose from the reinforcement and piled up at the end of the hose. In some cases it may protrude from the end of the hose fitting.

Cause: The probable cause is high vacuum or the wrong hose for vacuum service. No vacuum is recommended for double wire braid, 4 and 6 spiral wire hose unless some sort of internal coil support is used. Even though a hose is rated for vacuum service, if it is kinked, flattened out or bent too sharply this type of failure may occur.

9. Symptom: Hose has burst about six to eight inches away from the end fitting. The wire braid is rusted. There are no cuts or abrasions of the outer cover.

Cause: Improper assembly of the hose end fitting allowing moisture to enter around the edge of the fitting socket. The moisture will wick through the reinforcement. The heat generated by the system will drive it out around the fitting area but six to eight inches away it will be entrapped between the inner line and outer cover causing corrosion of the wire reinforcement.

10. Symptom: There are blisters in the cover of the hose. If one pricks the blisters, oil will be found in them.

Cause: A minute pin hole in the hose tube is allowing the high pressure oil to seep between it and the cover. Eventually it will form a blister wherever the cover adhesion is weakest. In the case of a screw together reusable fitting insufficient lubrication of the hose and fitting can cause this condition because the dry tube will adhere to the rotating nipple and tear enough to allow seepage. Faulty hose can also cause this condition.

11.Symptom: Blistering of the hose cover where a gaseous fluid is being used.

Cause:The high pressure gas is effusing through the hose tube, gathering under the cover and eventually forming a blister wherever the adhesion is weakest. Specially constructed hoses are available for high pressure gaseous applications. Your supplier can advise you on the proper hose to use in these cases.

12. Symptom: Fitting blew off of the end of the hose.

Cause: It may be that the wrong fitting has been put on the hose. Recheck manufacturer's specifications and part numbers.

In the case of a crimped fitting the wrong machine setting may have been used resulting in over or undercrimping. The socket of a screw together fitting for multiple wire braided hose may be worn beyond its tolerance. The swaging dies in a swaged hose assembly may be worn beyond the manufacturer's tolerances.

The fitting may have been applied improperly to the hose. Check manufacturer's instructions. The hose may have been installed without leaving enough slack to compensate for the possible 4% shortening that may occur when the hose is pressurized. This will impose a great force on the fitting. The hose itself may be out of tolerance. **13. Symptom:** The tube of the hose is badly deteriorated with evidences of extreme swelling. In some cases the hose tube may be partially "washed out."

Cause: Indications are that the hose tube is not compatible with the agent being carried. Even though the agent is normally compatible, the addition of heat can be the catalyst that can cause inner liner deterioration. Consult your hose supplier for a compatibility list or present him with a sample of the fluid being conducted by the hose for analysis. Make sure that the operating temperatures both internal and external do not exceed recommendations.

14. Symptom: Hose has burst. The hose cover is badly deteriorated and the surface of the rubber is crazed.

Cause: This could be simply old age. The crazed appearance is the effect of weathering and ozone over a period of time. Try to determine the age of the hose. Some manufacturers print or emboss the cure date on the outside of the hose. As an example, Aeroquip hose would show "4Q01" which would mean that the hose was manufactured during the fourth quarter (October, November or December) of 2001.

15. Symptom: Hose is leaking at the fitting because of a crack in the metal tube adjacent to the braze on a split flange head.

Cause: Because the crack is adjacent to the braze and not in the braze this is a stress failure brought on by a hose that is trying to shorten under pressure and has insufficient slack in it to do so. We have cured dozens of these problems by lengthening the hose assembly or changing the routing to relieve the forces on the fitting.

16. Symptom: A spiral reinforced hose has burst and literally split open with the wire exploded out and badly entangled.

Cause: The hose is too short to accommodate the change in length occurring while it is pressured.

17.Symptom: Hose is badly flattened out in the burst area. The tube is very hard down stream of the burst but appears normal up stream of the burst.

Cause: The hose has been kinked either by bending it too sharply or by squashing it in some way so that a major restriction was created. As the velocity of the fluid increases through the restriction the pressure decreases to the vaporization point of the fluid being conveyed. This is commonly called cavitation, and causes heat and rapid oxidation to take place which hardens the tube of the hose down stream of the restriction.

18.Symptom: Hose has not burst but it is leaking profusely. A bisection of the hose reveals that the tube has been gouged through to the wire braid for a distance of approximately two inches. **Cause:** This failure would indicate that erosion of the hose tube has taken place. A high velocity needle like fluid stream being emitted from an orifice and impinging at a single point on the hose tube will hydraulically remove a section of it. Be sure that the hose is not bent close to a port that is orificed.

In some cases where high velocities are encountered particles in the fluid can cause considerable erosion in bent sections of the hose assembly.

19. Symptom: The hose fitting has been pulled out of the hose. The hose has been considerably stretched out in length. This may not be a high pressure application.

Cause: Insufficient support of the hose. It is very necessary to support very long lengths of hose, especially if they are vertical. The weight of the hose along with the weight of the fluid inside the hose in these cases is being imposed on the hose fitting. This force can be transmitted to a wire rope or chain by clamping the hose to it much like the utilities support bundles of wire from pole to pole. Be sure to leave sufficient slack in the hose between clamps to make up for the possible 4% shortening that could take place when the hose is pressurized.

20. Symptom: The hose has not burst but it is leaking profusely. An examination of the bisected hose reveals that the tube has burst inwardly.

Cause: This type of failure is commonly referred to as hose tube blow down. It is usually associated with very low viscosity fluids such as air, nitrogen, freon and other gases. What happens is that under high pressure conditions the gases will effuse into the pores of the hose tube charging them up like miniature accumulators. If the pressure is very suddenly reduced to zero the entrapped gases literally explode out of the tube often tearing holes in it. In some hose constructions a second

hose tube made from a plastic such as nylon, is inserted into the hose.

A small leak will allow the gaseous fluid to seep between the two inner liners and when the pressure is reduced to zero the innermost liner will collapse because of the entrapped pressure around its outer diameter.

21. Symptom: PTFE hose assembly has collapsed internally in one or more places.

Cause: One of the most common causes for this is improper handling of the PTFE assembly. PTFE is a thermoplastic material which is not rubber-like. When bent sharply it simply collapses. This type of collapse is localized in one area and is radial. When the PTFE tube is folded longitudinally in one or more places this could be the result of heat (which softens the hose tube) along with vacuum conditions inside of it. Because of the additional tension of the wire braid reinforcement inherent with this type of hose, there is always a radial tension on the tube trying to push it in. Rapid cycling from a very hot agent in the hose to a very cold agent in the hose can produce the same type of failure. Eaton offers an internal support coil that will eliminate this problem.

22. Symptom: A PTFE hose assembly has developed a pin hole leak or several pin hole leaks.

Cause: This situation occurs when a petroleum base fluid. with a low viscosity, is flowing at a high velocity. This condition can generate high voltage due to static electricity. The high voltage is seeking a ground connection and the only ground connection available is the braided stainless steel reinforcement. This causes an electric arc, which penetrates through the PTFE tube as it travels to the reinforcement. Specially constructed PTFE tubes are available that have enough carbon black in them so as to be conductive. They will "drain off" the static electricity and preclude this problem.

SPECIALTY & Truck Hose

How to Identify Fluid Connectors

Measuring Tools—Order part number FT1341 for The Indentification Tool Kit. A seat angle gauge, thread pitch gauge and an I.D./O.D. caliper are necessary to make accurate measurements of commonly used connectors. Eaton offers a unique new caliper than offers the capabilities of both a caliper and a seat angle gauge in one unit.

I.D.

Measure the thread diameter with an I.D./O.D. caliper as shown.

How to Measure Sealing

Female connections are usually measured by inserting

the gauge into the connec-

and gauge are parallel, the

correct angle has been

determined.

tion and placing it on the sealing surface. If the centerlines of the connection

Surface Angles

Match the measurements to the charts.

How to Measure Threads

Male flare type connectors are usually measured by placing the gauge on the sealing surface. If the centerlines of the connection and gauge are parallel, the correct angle has been determined.

N.T.a

Use a thread pitch gauge to determine the number of threads per inch or the distance between threads in metric connections. Place the gauge on the threads until the fit is snug.

Match the measurement to the charts.

Thread Size Chart

The following chart is intended as a quick reference guide for thread size by dash size.

refere size b	nce guide f y dash size	for thread				>	I	0-Ring	W & MEDIUM ESSURE HOSE
		300	45°	370	7	30°		Thread O.D.	
			45°	T		300		Thread	JRE HOSE
Dash size	N.P.T.F.	N.P.S.M. Approx. Dia.	SAE 45° Auto. Refrig.	SAE 37° (J.I.C.) Hydraulic	SAE O-Ring Boss	P.T.T. 30° Automotive	SAE Invert. Flare	ORS	RESSI
-02	¹ /8-27	¹ /8–27	⁵ / ₁₆ 24	⁵ / ₁₆ –24	⁵ / ₁₆ -24		⁵ / ₁₆ 24		E H
-03			³ / ₈ –24	³ / ₈ –24	³ /8–24		³ / ₈ –24		E
-04	¹ /4-18	¹ /4-18	⁷ / ₁₆ –20	⁷ / ₁₆ –20	⁷ / ₁₆ –20		⁷ / ₁₆ 24	⁹ / ₁₆ –18	
-05			¹ / ₂ –20	¹ / ₂ -20	¹ / ₂ -20		¹ / ₂ -20		
-06	³ / ₈ –18	³ / ₈ –18	⁵ / ₈ –18	⁹ / ₁₆ –18	⁹ / ₁₆ –18		⁵ / ₈ –18	¹¹ / ₁₆ –16	S
-07			¹¹ / ₁₆ -24				¹¹ / ₁₆ –18		Ň
-08	¹ /2–14	¹ /2–14	³ /4–16	³ /4–16	³ /4–16		³ /4–18	¹³ / ₁₆ –16	E
-10			⁷ /8—14	⁷ / ₈ –14	⁷ / ₈ –14		⁷ / ₈ –18	1–14	OSE
-12	³ / ₄ –14	³ / ₄ –14	1 ¹ / ₁₆ –14	1 ¹ / ₁₆ –12	1 ¹ / ₁₆ –12		1 ¹ / ₁₆ 16	1 ³ / ₁₆ –12	Ŧ
-14				1 ³ / ₁₆ –12	1 ³ / ₁₆ –12				
-16	1–11 ¹ / ₂	1–11 ¹ /2		1 ⁵ / ₁₆ –12	1 ⁵ / ₁₆ –12	1 ⁵ / ₁₆ –14		1 ⁷ / ₁₆ –12	
-20	$1^{1}/_{4}-11^{1}/_{2}$	1 ¹ /4-11 ¹ /2		1 ⁵ /8–12	1 ⁵ /8–12	1 ⁵ / ₈ –14		1 ¹¹ / ₁₆ –12	
-24	$1^{1}/_{2}-11^{1}/_{2}$	$1^{1}/_{2}-11^{1}/_{2}$		1 ⁷ /8–12	1 ⁷ /8–12	1 ⁷ / ₈ –14		2–12	& IGS
-32	2–11 ¹ / ₂	2–11 ¹ /2		2 ¹ / ₂ -12	2 ¹ /2-12	2 ¹ / ₂ -12			SHS NIL
-40	2 ¹ /28	2 ¹ /28		3–12	3–12				PTE E FI
-48	3–8	3–8		3 ¹ / ₂ -12	3 ¹ /2–12			<u> </u>	AD/

Through hole dimensions

All dimensions are nominal. In jump size bodies, the minimum through hole dimensions will correspond to the smallest dash size.

Dash	E through hole					
Size	SAE	37°	0	RS		
	mm	in	mm	in		
-03	3,0	0.12				
-04	4,3	0.17	4,3	0.17		
-05	5,8	0.23				
-06	7,6	0.30	6,6	0.26		
-08	9,9	0.39	9,7	0.38		
-10	12,2	0.48	12,2	0.48		
-12	15,5	0.61	15,5	0.61		
-16	21,3	0.84	20,6	0.81		
-20	25,8	1.08	26,7	1.05		
-24	33,3	1.31	33,3	1.31		
-32	45,2	1.78				

ACCESSORIES & Assembly Instructions

HOSE ASSEMBLY Equipment

APPENDICIES

How to Measure Non-Threaded Connections

Four Bolt Flange—First measure the port hole diameter using the caliper. Next, measure the longest bolt hole spacing from center-to-center or measure the flange head diameter.

American Connections

NPTF (National Pipe

This connection is still widely used in fluid power systems, even though it is not recommended by the National Fluid Power Association (NFPA) for use

Tapered Thread I.D. t

Staplok—Measure the

male diameter with the

inserting the I.D. portion

of the caliper into the

through hole.

O.D. portion of the caliper.

Measure the female half by

in hydraulic applications. The thread is tapered and the seal takes place by deformation of the threads.

Dash Numbers

Most fluid piping system sizes in the United States are measured by dash numbers. These are universally used abbreviations for the size of the component expressed as the numerator of the fraction with the denominator always being 16. For example, a –04 port is ⁴/₁₆ or ¹/₄-inch. Dash numbers are usually nominal (in name only) and are abbreviations that make ordering of components easier.

NPSM (National Pipe Straight Mechanical)

Male Half

This connection is sometimes used in fluid power systems. The female half has a straight thread and an inverted 30° seat. The male half of the connection has a straight thread and a 30° internal chamfer. The seal

Female Half

takes place by compression of the 30° seat on the chamfer. The threads hold the connection mechanically.

NOTE: A properly chamfered NPTF male will also seal with the NPSM female.

ACCESSORIES & ASSEMBLY INSTRUCTIONS

HOSE ASSEMBLY Equipment

SPECIALTY & TRUCK HOSE

LOW & MEDIUM PRESSURE HOSE

HIGH PRESSURE HOSE

HOSE FITTINGS

NPTF Threads

Measure thread diameter and subtract 1/4-inch to find the nominal pipe size.

Inch Size	Dash size	Nominal Thread size	Male Thread O.D. inch		Female I.D.	thread inch
			fraction	decimal	fraction	decimal
¹ /8	02	¹ /8-27	¹³ /32	.41	³ /8	.38
¹ /4	04	¹ /4-18	17/32	.54	¹ / ₂	.49
³ /8	06	³ / ₈ -18	¹¹ /16	.68	⁵ /8	.63
¹ /2	08	¹ / ₂ -14	²⁷ /32	.84	²⁵ / ₃₂	.77
³ /4	12	³ /4-14	1 ¹ / ₁₆	1.05	1	.98
1	16	1-11 ¹ /2	1 ⁵ / ₁₆	1.32	1 ¹ /4	1.24
1 ¹ /4	20	1 ¹ / ₄ -11 ¹ / ₂	1 ²¹ / ₃₂	1.66	1 ¹⁹ /32	.58
1 ¹ /2	24	1 ¹ / ₂ -11 ¹ / ₂	1 ²⁹ /32	1.90	1 ¹³ / ₁₆	1.82
2	32	2-11 ¹ /2	2 ³ /8	2.38	2 ⁵ / ₁₆	2.30

Inch Size	Dash size	Nominal Thread size	Male Thread O.D. inch		Female I.D.	thread inch
			fraction	decimal	fraction	decimal
¹ /8	02	¹ /8-27	¹³ / ₃₂	.41	³ /8	.38
¹ /4	04	¹ /4-18	¹⁷ / ₃₂	.54	¹ / ₂	.49
³ /8	06	³ / ₈ -18	¹¹ /16	.68	⁵ /8	.63
$^{1}/_{2}$	08	¹ / ₂ -14	²⁷ / ₃₂	.84	²⁵ / ₃₂	.77
³ /4	12	³ /4-14	1 ¹ / ₁₆	1.05	1	.98
1	16	1-11 ¹ /2	1 ⁵ / ₁₆	1.32	1 ¹ /4	1.24
1 ¹ /4	20	1 ¹ / ₄ -11 ¹ / ₂	1 ²¹ / ₃₂	1.66	1 ¹⁹ / ₃₂	.58
$1^{1}/_{2}$	24	1 ¹ / ₂ -11 ¹ / ₂	1 ²⁹ / ₃₂	1.90	1 ¹³ / ₁₆	1.82
2	32	2-11 ¹ / ₂	2 ³ /8	2.38	2 ⁵ / ₁₆	2.30

SAE J1926 Straight O-Ring **Thread O-Ring Boss** (ORB)

Female Half

Male Half

This port connection is recommended by the NFPA for optimum leakage control in medium and high pressure hydraulic systems. The male connector has a straight thread and an O-Ring. The female port has a straight

thread, a machined surface (minimum spotface) and a chamfer to accept the

O-Ring. The seal takes place by compressing the O-Ring into the chamfer. The threads hold the connection mechanically.

Inch Size	Dash size	Nominal Thread size	Male T O.D.	Male Thread O.D. inch		Female Thread O.D. inch	
			fraction	decimal	fraction	decimal	
1/8	02	⁵ / ₁₆ -24	⁵ / ₁₆	.31	⁹ / ₃₂	.27	
³ /16	03	³ /8-24	3/8	.38	¹¹ / ₃₂	.34	
¹ /4	04	⁷ / ₁₆ -20	⁷ / ₁₆	.44	¹³ / ₃₂	.39	
⁵ /16	05	¹ / ₂ -20	¹ / ₂	.50	¹⁵ / ₃₂	.45	
³ /8	06	⁹ / ₁₆ -18	⁹ / ₁₆	.56	17/32	.51	
¹ /2	08	³ /4-16	3/4	.75	3/4	.69	
⁵ /8	10	⁷ /8-14	7/8	.88	¹³ /16	.81	
³ /4	12	1 ¹ / ₁₆ -12	1 ¹ /16	1.06	1	.98	
7/8	14	1 ³ / ₁₆ -12	1 ³ / ₁₆	1.19	1 ¹ /8	1.13	
1	16	1 ⁵ / ₁₆ -12	1 ⁵ / ₁₆	1.31	1 ¹ /4	1.23	
1 ¹ /4	20	1 ⁵ /8-12	1 ⁵ /8	1.63	19/16	1.54	
1 ¹ /2	24	1 ⁷ /8-12	1 ⁷ /8	1.88	1 ¹³ / ₁₆	1.79	
2	32	2 ¹ /2-12	2 ¹ /2	2.50	2 ⁷ / ₁₆	2.42	

0 D

SAE J514 37° Hydraulic

Male Half

This connection is very common in fluid power systems. Both the male and female halves of the connections have 37° seats. The seal takes place by establishing a line contact between the male flare and the female cone seat.

37≗ Thread D ⊥	
	Fema e Half

The threads hold the connection mechanically. CAUTION: In the -02, -03, -04, -05, -08 and -10 sizes, the threads of the SAE 45° flare and the SAE 37° flare are the same. However, the sealing surface angles are not the same.

Inch Size	Dash size	Nominal Thread size	Male Thread O.D. inch		Female Thread O.D. inch	
			fraction	decimal	fraction	decimal
1/8	02	⁵ / ₁₆ -24	⁵ / ₁₆	.31	⁹ / ₃₂	.27
³ /16	03	³ /8-24	³ /8	.38	¹¹ / ₃₂	.34
1/4	04	⁷ / ₁₆ -20	⁷ / ₁₆	.44	¹³ / ₃₂	.39
⁵ /16	05	¹ / ₂ -20	¹ / ₂	.50	¹⁵ /32	.45
³ /8	06	⁹ / ₁₆ -18	⁹ / ₁₆	.56	17/32	.51
¹ /2	08	³ /4-16	3/4	.75	³ /4	.69
⁵ /8	10	⁷ /8-14	7/8	.88	¹³ /16	.81
³ /4	12	1 ¹ / ₁₆ -12	1 ¹ /16	1.06	1	.98
7/8	14	1 ³ /16-12	1 ³ /16	1.19	1 ¹ /8	1.13
1	16	1 ⁵ / ₁₆ -12	1 ⁵ / ₁₆	1.31	1 ¹ /4	1.23
1 ¹ /4	20	1 ⁵ /8-12	1 ⁵ /8	1.63	1 ⁹ / ₁₆	1.54
1 ¹ /2	24	1 ⁷ /8-12	1 ⁷ /8	1.88	1 ¹³ /16	1.79
2	32	2 ¹ /2-12	2 ¹ / ₂	2.50	2 ⁷ / ₁₆	2.42

Male Half

This connection offers the very best leakage control available today. The male connector has a straight thread and an O-Ring in the face. The female has a straight thread and a machined flat face. The seal

takes place by compressing the O-Ring onto the flat face of the female, similar to the split flange type fitting. The threads hold the connection mechanically.

Inch Size	Dash size	Nominal Thread size	Male Thread O.D. inch		Female Thread O.D. inch	
			fraction	decimal	fraction	decimal
¹ /4	04	⁹ / ₁₆ -18	⁹ /16	.56	17/32	.51
³ /8	06	¹¹ / ₁₆ -16	¹¹ /16	.69	⁵ /8	.63
¹ / ₂	08	¹³ / ₁₆ -16	¹³ /16	.82	3/4	.75
⁵ /8	10	1-14	1	1.00	¹⁵ / ₁₆	.93
³ /4	12	1 ³ / ₁₆ -12	1 ³ / ₁₆	1.19	1 ¹ /8	1.11
1	16	1 ⁷ / ₁₆ -12	1 ⁷ / ₁₆	1.44	1 ³ /8	1.36
1 ¹ /4	20	1 ¹¹ / ₁₆ -12	1 ¹¹ / ₁₆	1.69	1 ⁵ /8	1.61
1 ¹ /2	24	2-12	2	2.00	1 ¹⁵ / ₁₆	1.92

Male Half

Female Half

This connection is frequently used in automotive systems. The male connector can either be a 45° flare in the tube fitting form or a 42° seat in the machined adapter form. The

female has a straight thread with a 42° inverted flare. The seal takes place on the flared surfaces. The threads hold the connection mechanically.

Inch Size	Dash size	Nominal Thread size	Male Thread O.D. inch		Female Thread O.D. inch	
			fraction	decimal	fraction	decimal
¹ /8	02	⁵ /16-24	⁵ /16	.32	⁹ /32	.28
³ /16	03	³ /8-24	3/8	.38	¹¹ /32	.34
¹ /4	04	⁷ / ₁₆ -24	7/16	.44	¹³ /32	.40
⁵ /16	05	¹ /2-20	¹ /2	.50	¹⁵ /32	.45
³ /8	06	⁵ /8-18	5/8	.63	⁹ /16	.57
⁷ /16	07	¹¹ / ₁₆ -18	¹¹ /16	.69	⁵ /8	.63
¹ /2	08	³ /4-18	3/4	.75	²³ / ₃₂	.70
⁵ /8	10	⁷ / ₈ -18	7/8	.88	¹³ /16	.82
³ /4	12	1 ¹ / ₁₆ -16	1 ¹ / ₁₆	1.06	1	1.00

Female Half

ADAPTERS & Tube fittings

ACCESSORIES & Assembly instructions

SPECIALTY & TRUCK HOSE

LOW & MEDIUM PRESSURE HOSE

HIGH PRESSURE HOSE

HOSE FITTINGS

Male Half

This connection is commonly used in refrigeration, automotive and truck piping systems. The connector is frequently made of brass. Both the male and female connectors have 45° seats. The seal takes place between the male flare the female cone seat.

Thread D

Female Half

The threads hold the connection mechanically. CAUTION: In the -02, -03, -04, -05, -08 and -10 sizes, the threads of the SAE 45° flare and the SAE 37° flare are the same. However, the sealing surface angles are not the same.

Inch Size	Dash size	Nominal Thread size	Male Thread O.D. inch		Female Thread O.D. inch	
			fraction	decimal	fraction	decimal
1/8	02	⁵ / ₁₆ -24	⁵ /16	0.31	⁹ /32	0.27
³ /16	03	³ / ₈ -24	3/8	0.38	¹¹ / ₃₂	0.34
1/4	04	⁷ / ₁₆ -20	⁷ / ₁₆	0.44	¹³ /32	0.39
⁵ /16	05	¹ / ₂ -20	¹ / ₂	0.50	¹⁵ /32	0.45
³ /8	06	⁵ /8-18	⁵ /8	0.63	⁹ /16	0.57
¹ /2	08	³ /4-16	3/4	0.75	¹¹ /16	0.69
⁵ /8	10	⁷ /8-14	7/8	0.88	¹³ /16	0.81
³ /4	12	1 ¹ / ₁₆ -14	1 ¹ /16	1.06	1	0.99
7/8	14	1 ¹ /4-12	1 ¹ /4	1.25	1 ⁵ /32	1.16
1	16	1 ³ /8-12	1 ³ /8	1.38	1 ⁹ /32	1.29

Female Half

Staplok (SAE J1467)

This is a radial O-Ring seal

O Ring

Backup

Ma e Half

connection developed in ACCESSORIES & ASSEMBLY INSTRUCTIONS Germany and commonly used for hydraulic application in underground mines. The

male contains an exterior O-Ring and backup ring, plus a groove to accept the "staple". The female has a smooth bore with two holes Nominal Inch Dash Size size Male Thread Thread

Size	size	size	0.D.	Inch	0.D.	Inch
			fraction†	decimal	fraction	decimal
¹ /4	04		⁹ /32	.586	1 ⁹ /32	.597
³ /8	06		²⁵ /32	.783	⁵¹ /64	.794
¹ /2	08		¹⁵ / ₁₆	.940	⁶¹ / ₆₄	.951
³ /4	12		1 ⁹ / ₆₄	1.137	1 ⁹ / ₆₄	1.148
1	16		1 ¹⁷ /32	1.529	1 ³⁵ / ₆₄	1.540
1 ¹ /4	20		1 ¹³ / ₁₆	1.806	1 ¹³ / ₁₆	1.817
1 ¹ /2	24		2 ⁵ / ₃₂	2.163	2 ¹¹ / ₆₄	2.174
2	32		2 ³³ /64	2.517	2 ¹⁷ / ₃₂	2.528

†Measure to the closest 1/64-inch.

for the stable. A "U" shaped retaining clip or staple is inserted through the two holes, passing through the groove in the male to lock the connection together. The seal takes place by contact between the O-Ring in the male and the smooth bore of the female.

Female Thread

Male Half

Female Half

This connection is commonly used in fluid power systems. There are two pressure ratings. Code 61 is referred to as the "standard" series and Code 62 is the "6000 psi' series. The design concept for both series is the same, but the bolt hole spacing and flanged head diameters are larger for the higher pressure, Code 62 connection. The female (port) is an unthreaded hole with four bolt holes in a rectangular pattern around the port. The male con-

sists of a flanged head, grooved for an O-Ring, and either a captive flange or split flange halves with bolt holes to match the port. The seal takes place on the O-Ring, which is compressed between the flanged head and the flat surface surrounding the port. The threaded bolts hold the connection together.

*SAE J518, JIS B 8363, ISO/DIS 6162 and DIN 20066 are interchangeable, except for bolt sizes.

Inch Size (Dash size)	Port Hole I.D. inch fract. (deci.)	Bo Dimer inc	Bolt Bolt Hole nension Spacing "A" inch inch (decimal)		Flanged Head Dia. "K" inch (dec)		
		Cd. 61	Cd. 62	Cd. 61	Cd.62	Cd. 61	Cd. 62
¹ /2 (08)	¹ /2 (.50)	⁵ /16-18x1 ¹ /4	⁵ / ₁₆ -18x1 ¹ / ₄	1 ¹ /2 (1.50)	1 ¹⁹ /32 (1.59)	1 ³ /16 (1.19)	1 ¹ /4 (1.25)
³ /4 (12)	³ /4 (.75)	³ /8-16x1 ¹ /4	³ /8-16x1 ¹ /2	1 ⁷ /8 (1.88)	2 (2.00)	1 ¹ /2 (1.50)	1 ⁵ ⁄/8 (1.63)
1 (16)	1 (1.00)	³ /8-16x1 ¹ /4	⁷ / ₁₆ -14x1 ³ / ₄	2 ¹ /16 (2.06)	2 ¹ /4 (2.25)	1 ³ /4 (1.75)	1 ⁷ /8 (1.88)
1 ¹ /4 (20)	1 ¹ /4 (1.25)	⁷ / ₁₆ -14x1 ¹ / ₂	¹ /2-13x1 ³ /4	2 ⁵ /16 (2.31)	2 ⁵ /8 (2.63)	2 (2.00)	2 ¹ /8 (2.13)
1 ¹ /2 (24)	1 ¹ /2 (1.50)	¹ /2-13x1 ¹ /2	⁵ /8-11x2 ¹ /4	2 ³ /4 (2.75)	3 ¹ /8 (3.12)	2 ³ /8 (2.38)	2 ¹ /2 (2.50)
2 (32)	2 (2.00)	¹ /2-13x1 ¹ /2	³ /4-10x2 ³ /4	3 ¹ / ₁₆ (3.06)	3 ¹³ ⁄ ₁₆ (3.81)	2 ¹³ /16 (2.81)	3 ¹ /8 (3.12)

How to Measure

Four Bolt Flange—First measure the port hole diameter using the caliper. Next, measure the longest bolt hole spacing from center-tocenter (Dimension "A") or measure the flanged head diameter.

Male Half

This connection is commonly used in fluid power systems. There are two pressure ratings. PN 35/350 bar (Code 61) is the "standard" series and PN 415 bar (Code 62) is the high pressure series. The design concept for both series is the same, but the bolt hole spacing and flanged head diameters are larger for the higher pressure, PN 415 bar connection. Both metric and inches bolts are used. The port will have an "M" stamped on it if metric bolts are required.

The female (port) is an unthreaded hole with four bolt holes in a rectangular pattern around the port. The male consists of a flanged head, grooved for an O-Ring, and either a captive flange or split flange halves with bolt holes to match the port. The seal takes place on the O-Ring, which is compressed between the flanged head and the flat surface surrounding the port. The threaded bolts hold the connection together.

Ľ

1

Female Half

*ISO/DIS 6162, DIN 20066, JIS B 8363 and SAE J518 are interchangeable, except for holt sizes

			DUIT 31263	53.			
Size	Port Hole	B Dimensio	olt ns Spacing	Bol	t Hole "A"		
		PN 35/350 Bar (Cd.61)	PN 415 Bar (Cd. 62)	PN 35/350 Bar (Cd. 61)	PN 415 Bar (Cd. 62)		
mm in [dash]	mm [in]	mm [in]	mm [in]	mm [in]	mm [in]		
13 (¹ / ₂) [08]	12,7 [.50]	M8 x 1.25 x 30 [⁵ / ₁₆ –18 x 1 ¹ / ₄]	M8 x 1.25 x 30 [⁵ / ₁₆ –18 x 1 ¹ / ₄]	38.10 [1.50]	40.49 [1.57]		
19 (³ / ₄) [12]	19,1 [.75]		M10 x 1.5 x 40 $[^3/_8-16 x 1^1/_2]$	47.63 [1.88]	50.80 [2.00]		
25 (1) [16]	25,4 [1.00]		M12 x 1.75 x 45 [⁷ / ₁₆ –14 x 1 ³ / ₄]	52.37 [2.06]	57.15 [2.25]		
32 (1 ¹ / ₄) [20]	31,8 [1.25]	M12 x 1.75 x 40 $[^{7}/_{16}$ -14 x 1 $^{1}/_{2}]$	M14 x 2 x 50 $[^{1}/_{2}$ -13 x $1^{3}/_{4}]$	58.72 [2.31]	66.68 [2.63]		
38 (1 ¹ / ₂)	38,1 [1.50]	M14 x 2 x 40 $[^{1}/_{2}$ -13 x $1^{1}/_{2}]$	M16 x 2 x 55 $[{}^{5}\!/_{8}$ -11 x 2 ¹ / ₄]	[2.75]	[3.13]		
51 (2) [32]	50,8 [2.00]	M14 x 2 x 40 $[^{1}/_{2}-13 x 1^{1}/_{2}]$	$\frac{M20 \times 2.5 \times 70}{[^{3}\!/_{4}\!-\!10 \times 2^{3}\!/_{4}]}$	77.77 [3.06]	96.82 [3.81]		

Flanged Head Inch

0120	Diu.	1			0	6	(ϕ)
	PN 3 Bar (0	5/350 Cd.61)	PN / Bar (C	415 d. 62)	G	φ- λ	
	mm	in	mm	in	PORT_X)	Γ <i>]</i> /
¹ /2	30.18	1.19	31.75	1.25	0	-&	6
³ /4	38.10	1.50	41.28	1.63	-		
1	44.45	1.75	47.63	1.88	Ī		h
1 ¹ /4	50.80	2.00	53.98	2.13	K I		
1 ¹ /2	60.33	2.38	63.50	2.50	l l		
2	71.42	2.81	79.38	3.13	1		
_							

DIN 7631 Series

dimensionally equal to DIN 7631

This connection is frequently used in hydraulic systems. The male has a straight metric thread and a 60° (included angle) recessed cone. The female has a straight thread and a tapered nose/Globeseal

Use With

mm

6

8

Pipe/Tube O.D.

in

0.24

DIN 7631 seat. The seal takes place by contact between the cone of the male and the nose of the tapered nose/Globeseal flare-

less swivel. The threads hold the connection mechanically. Metric Male Thread Female Thread Thread Size 0.D. I.D. mm in mm in M12 x 1.5 0.47 0.41 12 10,5 0 55 M14 x 1 5 14 125 <u>0 49</u>

8	0.32	M14 x 1.5	14	0.55	12,5	0.49
10	0.39	M16 x 1.5	16	0.63	14,5	0.57
12	0.47	M18 x 1.5	18	0.71	16,5	0.65
15	0.59	M22 x 1.5	22	0.87	20,5	0.81
18	0.71	M26 x 1.5	26	1.02	24,5	0.96
22	0.87	M30 x 1.5	30	1.18	28,5	1.12
28	1.10	M38 x 1.5	38	1.50	36,5	1.44
35	1.38	M45 x 1.5	45	1.77	43,5	1.71
42	1.65	M52 x 1.5	52	2.04	50,5	1.99

DIN 3902 Series

This connection style consists of a common male and three different female halves.

The male has a straight metric thread, a 24° included angle and a recessed counterbore that matches the tube O.D. used with it. The female may

"R" Dim. s.Rh.†

in

0.24

0.32 8

14 0.55

20 0.78

25 0.98

38 1.50

mm

6

10 0.39

Tube O.D. Tube O.D.

"R" Dim. I.Rh.*

mm in.

6 0.24

8 0.32

10 0.39

12 0.47

12 0.47

16 0.63

22 0.87

28 1.10

30

35 1.38

42 1.65

18 0.71

0.59 15

1.18

*I.Rh. is a light duty system. ts.Rh. is a heavy duty system. be a tube, nut and ferrule, a tapered nose/Globeseal flarenose/Globeseal flareless swivel with an O-Ring in the nose

Female Thread

I.D.

in

0.41

0.49

0.57

0.65

0.73

0.81

0.89

0.96

1.11

1.34

1.57

1.70

1.97

mm

10.5

12.5

14.5

16.5

18.5

20.5

22.5

24.5

28

34

40

43

50

Metric

Thread Size

M12 x 1.5

M14 x 1.5

M16 x 1.5

M18 x 1.5

M20 x 1.5

M22 x 1.5

M24 x 1.5

M26 x 1.5

M30 x 2.0

M36 x 2.0

M42 x 2.0

M45 x 2.0

M52 x 2.0

Male Thread O.D.

in

0.47

0.55

0.63

0.71

0.78

0.87

0.94

1.02

1.18

1.41

1.65

1.77

2.04

mm

12

14

16

18

20

22

24

26

30

36

42

45

52

less swivel or a tapered (DKO type).

DIN 20066 4-Bolt Flange*

Female Half

This connection is commonly used in fluid power systems. There are two pressure ratings. Form R (Code 61) is referred to as the "standard duty" series and Form S (Code 62) is the "heavy duty" series. The design concept for both series is the same, but the bolt hole spacing and flanged head diameters are larger for the higher pressure, Form S connection. Both metric and inch bolts are used.

Size

la ala

The female (port) is an unthreaded hole with four bolt holes in a rectangular pattern around the port. The male consists of a flanged head, grooved for an O-Ring, and either a captive flange or split flange halves with bolt holes to match the port. The seal takes place on the O-Ring, which is compressed between the flanged head and the flat surface surrounding the port. The threaded bolts hold the connection together.

*DIN 20066, IS/DIS 6166, JIS B 8363 and SAE J518 are interchangeable, except for bolt sizes.

mm (inch) [dash]	Port Hole	Bolt Dimensions		Bolt Hole	Spacing
	Form R. Form S (Cd. 61) (Cd. 62)		Form R (Cd. 61)	Form S (Cd. 62)	
	mm (in)			mm (in)	mm (in)
12 (¹ / ₂) [08]	12.7 (.50)	M8 x 1.25 x 30 ⁵ / ₁₆ -18 x 1 ¹ / ₄	M8 x 1.25 x 30 ⁵ / ₁₆ -18 x 1 ¹ / ₄	38.10 (1.50)	40.49 (1.57)
20 (³ / ₄) [12]	19.1 (.75)	M10 x 1.5 x 30 ³ / ₈ -16 x 1 ¹ / ₄	M10 x 1.5 x 40 ³ / ₈ -16 x 1 ¹ / ₂	47.63 (1.88)	50.80 (2.00)
25 (1) [16]	25.4 (1.00)	M10 x 1.5 x 35 ³ / ₈ -16 x 1 ¹ / ₄	M12 x 1.75 x 45 7/16-14 x 1 ³ / ₄	52.37 (2.06)	57.15 (2.25)
32 (1 ¹ / ₄) [20]	31.7 (1.25)	M10 x 1.75 x 40 $^{7}/_{16}$ -14 x 1 $^{1}/_{2}$	M14 x 2 x 45 ¹ / ₂ -13 x 1 ³ / ₄	58.72 (2.31)	66.68 2.63)
40 (1 ¹ / ₂) [24]	38.0 (1.50)	M12 x 1.75 x 40 ¹ / ₂ -13 x 1 ¹ / ₂	M16 x 2 x 55 ⁵ / ₈ -11 x 2 ¹ / ₄	69.85 (2.75)	79.38 (3.13)
50 (2) [32]	50.8 (2.00)	M12 x 1.75 x 40 ¹ / ₂ -13 x 1 ¹ / ₂	M20 x 2.5 x 70 ³ / ₄ -10 x 2 ³ / ₄	77.77 (3.06)	96.82 (3.81)

ABLY INSTRUCT	SSORIES &	
UCTIONS		
S		

HOSE FITTINGS

ADAPTERS & TUBE FITTINGS

ACCE

Size	Dia. "K"					
	FORM R (Cd. 61)		FORM R FOR (Cd. 61) (Cd.			
	mm in		mm	in		
¹ /2	30.18	1.19	31.75	1.25		
³ /4	38.10	1.50	41.28	1.63		
1	44.45	1.75	47.63	1.88		
1 ¹ /4	50.80	2.00	53.98	2.13		
$1^{1}/_{2}$	60.33	2.38	63.50	2.50		
2	71.42	2.81	79.38	3.13		

Flowwood Lload

DIN 3852 Male Connectors and Female Ports

DIN 3852 Metric Threads

Metric Thread	Male Thread O.D. "A"		Female I.D.	e Thread . "B"
	mm	in.	mm	in.
M12 x 1.5	12	0.47	10,5	0.41
M14 x 1.5	14	0.55	12,5	0.49
M16 x 1.5	16	0.63	14,5	0.57
M18 x 1.5	18	0.71	16,5	0.65
M20 x 1.5	20	0.78	18,5	0.73
M22 x 1.5	22	0.87	20,5	0.81
M24 x 1.5	24	0.94	22,5	0.89
M26 x 1.5	26	1.02	24,5	0.96
M27 x 2	27	1.06	25	0.98
M30 x 1.5	30	1.18	28,5	1.12
M30 x 2	30	1.18	28	1.10
M33 x 2	33	1.30	31	1.22
M36 x 1.5	36	1.41	34,5	1.36
M36 x 2	36	1.41	34	1.33
M38 x 1.5	38	1.49	36,5	1.43
M38 x 2	38	1.49	36	1.41
M42 x 1.5	42	1.65	40,5	1.60
M42 x 2	42	1.65	40	1.57
M45 x 1.5	45	1.77	43,5	1.71
M45 x 2	45	1.77	43	1.69
M48 x 1.5	48	1.89	46,5	1.83
M48 x 2	48	1.89	46	1.81
M52 x 1.5	52	2.04	50,5	1.89
M52 x 2	52	2.04	50	1.97

For DIN 3852 Whitworth pipe thread dimensions, see BSPT/BSPP dimensions. They are the same.

French Connections

SPECIALTY & TRUCK HOSE

Millimetrique and GAZ Series

Thread

This connection consists of a common male and two different females. The Millimetrique Series is used with whole number metric O.D. tubing and the GAZ Series is used with fractional number metric O.D. pipe size tubing.

Millimetrique and GAZ Threads

Tubing O.D. "R" dim.		"Gaz" Pipe O.D. 1. "R" dim.		'Gaz" Metric pe O.D. Thread Male 3" dim. size		Male Thread O.D.		Thread).
mm	in	mm	in		mm	in	mm	in
6	0.24			M12 x 1.5	12	0.47	11	0.43
8	0.32			M14 x 1.5	14	0.55	12.5	0.49
10	0.39			M16 x 1.5	16	0.63	14.5	0.57
12	0.47			M18 x 1.5	18	0.71	16.5	0.65
14	0.55	13.25	0.52	M20 x 1.5	20	0.78	18.5	0.73
15	0.59			M22 x 1.5	22	0.87	20.5	0.81
16	0.63	16.75	0.66	M24 x 1.5	24	0.94	22.5	0.89
18	0.71			M27 x 1.5	27	1.06	25.5	1.00
22	0.87	21.25	0.83	M30 x 1.5	30	1.18	28.5	1.12
25	0.98			M33 x 1.5	33	1.30	31.5	1.24
28	1.10	26.75	1.05	M36 x 1.5	36	1.41	34.5	1.36
30	1.18			M39 x 1.5	39	1.54	37.5	1.48
32	1.25			M42 x 1.5	42	1.65	40.5	1.60
35	1.38	33.50	1.32	M45 x 1.5	45	1.77	43.5	1.71
38	1.50			M48 x 1.5	48	1.89	46.5	1.83
40	1.57	42.25	1.66	M52 x 1.5	52	2.04	50.5	1.99
45	1.77			M54 x 2.0	54	2.12	52	2.05
		48.25	1.90	M58 x 2.0	58	2.28	55	2.16

HOSE ASSEMBLY Equipment

British Connections

British Standard Pipe (BSP)

This BSPT (tapered) connection is similar to the NPT, except that the thread pitches are different in most sizes, and the thread form and O.D.s are

Female Half

close but not the same. Sealing is accomplished by thread distortion. A thread sealant is recommended.

The BSP (parallel) male is similar to the NPSM male except the thread pitches are different in most sizes. The female swivel BSPP has a tapered nose/Globeseal flareless swivel which seals on the cone seat of the male.

BSPT/BSPP Threads

Inch Size	Dash size	Nominal Thread size	Male Thread O.D. Inch		Female [®] O.D.	Fhread Inch
			fraction	decimal	fraction	decimal
¹ /8	02	¹ / ₈ –28	³ /8	0.38	¹¹ / ₃₂	0.35
¹ /4	04	¹ / ₄ –19	³³ / ₆₄	0.52	¹⁵ /32	0.47
³ /8	06	³ / ₈ –19	²¹ / ₃₂	0.65	¹⁹ /32	0.60
¹ / ₂	08	¹ / ₂ -14	1 ¹³ / ₁₆	0.82	3/4	0.75
⁵ /8	10	⁵ / ₈ –14	7/8	0.88	¹³ / ₁₆	0.80
³ /4	12	³ / ₄ –14	¹¹ / ₃₂	1.04	³¹ / ₃₂	0.97
1	16	1–11	¹⁵ /16	1.30	1 ⁷ / ₃₂	1.22
1 ¹ /4	20	1 ¹ / ₄ -11	1 ²¹ / ₃₂	1.65	1 ⁹ / ₁₆	1.56
1 ¹ /2	24	1 ¹ / ₂ -11	1 ⁷ /8	1.88	1 ²⁵ / ₃₂	1.79
2	32	2–11	2 ¹¹ / ₃₂	2.35	2 ¹ /4	2.26

*Frequently, the thread size is expressed as a fractional dimension preceded by the letter "G" or the letter "R". The "G" represents a parallel thread and the "R" indicates a tapered thread. For example, BSPP 3/8–19 may be expressed as G 3/8, and BSPT 3/8–19 may be expressed as R3/8.

HIGH PRESSURE HOSE

HOSE FITTINGS

Japanese Connections

JIS 30° Male Inverted Seat, Parallel Pipe Threads (Threads per JIS B 0202)

Male Half

Female Half

The JIS parallel is similar to the BSPP connection. The JIS parallel thread and the BSPP connection are interchangeable.

Size	Size (dash)	Nominal Thd. Size (similar to bspp)	Male Thread O.D.		Female T I.D.	hread
			fraction	mm	fraction	mm
¹ / ₄	6 (04)	¹ / ₄ –19	³³ / ₆₄	13.2	¹⁵ /32	11.9
3/8	9 (06)	³ / ₈ –19	²¹ / ₃₂	16.7	¹⁹ /32	15.3
$\frac{1}{2}$	12 (08)	¹ / ₂ -14	¹³ /16	21.0	3/4	19.2
³ /4	19 (12)	³ / ₄ –14	1 ¹ / ₃₂	26.4	³¹ / ₃₂	24.6
1	25 (16)	1–11	1 ⁵ / ₁₆	33.3	1 ⁷ / ₃₂	30.9
1 ¹ /4	32 (20)	1 ¹ /4–11	1 ²¹ / ₃₂	41.9	1 ⁹ / ₁₆	39.6
$1^{1}/_{2}$	38 (24)	1 ¹ / ₂ -11	1 ⁷ /8	47.8	1 ²⁵ / ₃₂	45.5
2	50 (32)	2–11	2 ¹¹ / ₃₂	59.7	2 ¹ /4	57.4

JIS 30° Male (Inverted) Seat, Metric Threads

(Threads per JIS B 0207)

Female Half

The JIS parallel (metric) is the same as the JIS parallel (PF), except for the thread difference.

Inch Size	Dash Size Equi- valent	Thread Size	Male Th O.D	read	Female Th I.D.	read
			fraction	mm	fraction	mm
6	04	M14 x 1.5	14	0.55	12.5	0.49
9	06	M18 x 1.5	18	0.71	16.5	0.65
12	08	M22 x 1.5	22	0.87	20.5	0.81
19	12	M30 x 1.5	30	1.18	28.5	1.12
25	16	M33 x 1.5	33	1.30	31.5	1.24
32	20	M42 x 1.5	42	1.65	40.5	1.60

JIS Tapered Pipe (PT)

(Threads per JIS B 0203)

Female Half

The JIS tapered thread is similar to the BSPT connection in design, appearance and

Male Half

dimensions. The JIS tapered thread and the BSPT connection are interchangeable.

Size	Size (dash)	Nominal Thd. Size (similar to bspt)	Male Thread O.D.		Female T I.D.	hread
			fraction	mm	fraction	mm
¹ /4	6 (04)	¹ / ₄ -19	³³ / ₆₄	13.2	¹⁵ /32	11.9
3/8	9 (06)	³ / ₈ –19	²¹ / ₃₂	16.7	¹⁹ /32	15.3
¹ /2	12 (08)	¹ / ₂ -14	¹³ /16	21.0	3/4	19.2
³ /4	19 (12)	³ / ₄ -14	1 ¹ / ₃₂	26.4	³¹ / ₃₂	24.6
1	25 (16)	1–11	1 ⁵ / ₁₆	33.3	1 ⁷ /32	30.9
1 ¹ /4	32 (20)	1 ¹ / ₄ -11	1 ²¹ /32	41.9	1 ⁹ / ₁₆	39.6
1 ¹ /2	38 (24)	1 ¹ / ₂ -11	1 ⁷ /8	47.8	1 ²⁵ / ₃₂	45.5
2	50 (32)	2–11	2 ¹¹ /32	59.7	2 ¹ /4	57.4

JIS 30° Female (Cone) Seat, Parallel Pipe Threads

(Threads per JIS B 0202)

MALE HALF

The Japanese JIS 30° flare is

37° flare connection in application as well as sealing princi-

similar to the American SAE

FEMALE HALF

ples. However, the flare angle and dimensions are different. The threads are similar to BSPP.

Size	Size (dash)	Nominal Thd. Size (similar to bspp)	Male T O.	hread D.	Female T I.D.	hread
			fraction	mm	fraction	mm
1/4	6 (04)	¹ /4–19	³³ /64	13.2	¹⁵ /32	11.9
³ /8	9 (06)	³ /8–19	²¹ / ₃₂	16.7	¹⁹ /32	15.3
¹ /2	12 (08)	¹ /2–14	¹³ /16	21.0	3/4	19.2
³ /4	19 (12)	³ /4–14	1 ¹ / ₃₂	26.4	³¹ /32	24.6
1	25 (16)	1–11	1 ⁵ /16	33.3	1 ⁷ /32	30.9
1 ¹ /4	32 (20)	1 ¹ /4–11	1 ²¹ /32	41.9	1 ⁹ /16	39.6
1 ¹ /2	38 (24)	1 ¹ /2–11	1 ⁷ /8	47.8	1 ²⁵ /32	45.5
2	50 (32)	2–11	2 ¹¹ /32	59.7	2 ¹ /4	57.4

SPECIALTY & Truck hose

JIS B 8363 4-Bolt Flange*

LOW & MEDIUM PRESSURE HOSE

HIGH PRESSURE HOSE

Male Half

This connection is commonly used in fluid power systems. There are two pressure ratings. Type I (Code 61) is referred to as the "standard" series and Type II (Code 62) is the "6000 psi" series. The design concept for both series is the same, but the bolt hole spacing and flanged head diameters are larger for the higher pressure, Type II connection. Both metric and inch bolts are used.

The female (port) is an unthreaded hole with four bolt holes in a rectangular pattern around the port. The male consists of a flanged head, grooved for an O-Ring, and either a captive flange or split flange halves with bolt holes to match the port. The seal takes place on the O-Ring, which is compressed between the flanged head and the flat surface surrounding the port. The threaded bolts hold the connection together. *JIS B 8363, ISO/DIS 6162, DIN 20066, and SAE J518 are interchangeable, except for bolt sizes.

Female Half

Bolt

Hole

Spacing

1

1 -

Inch size	Flang dia. "	jed Hea 'K″	ad	
	Typ Bar (C	e I d.61)	Type Bar (C	e II d. 62)
	mm	in	mm	in
¹ /2	30,18	1.19	31,75	1.25
³ /4	38,10	1.50	41,28	1.63
1	44,45	1.75	47,63	1.88
1 ¹ /4	50,80	2.00	53,98	2.13
1 ¹ /2	60,33	2.38	63,50	2.50
2	71,42	2.81	79,38	3.13

Size mm Inch [dash]	Port Hole mm (inch)	Bolt Dim mm &	ensions inch	Bolt Hole "A" mi	e Spacing n (inch)
		TYPE I (Cd.61)	TYPE II (Cd. 62)	TYPE I (Cd. 61)	TYPE II (Cd. 62)
12 (¹ / ₂) [08]	12.7 (0.50)	M8 x 1.25 x 30 ⁵ / ₁₆ –18 x 1 ¹ / ₄	$\frac{\text{M8 x 1.25 x 30}}{\frac{5}{16}-18 \text{ x 1}^{1}/4}$	38.10 (1.50)	40.49 (1.57)
19 (³ / ₄) [12]	19.1 (0.75)	M10 x 1.5 x 30 3 / ₈ –16 x 1 1 / ₄	M10 x 1.5 x 40 3 / ₈ –16 x 1 1 / ₂	47.63 (1.88)	50.80 (2.00)
25 (1) [16]	25.4 (1.00)	M10 x 1.5 x 30 3 / ₈ –16 x 1 1 / ₄	M12 x 1.75 x 45 ⁷ / ₁₆ –14 x 1 ³ / ₄	52.37 (2.06)	57.15 (2.25)
32 (1 ¹ / ₄) [20]	31.7 (1.25)	M12 x 1.5 x 40 ⁷ / ₁₆ –14 x 1 ¹ / ₂	M14 x 2 x 45 ¹ / ₂ –13 x 1 ³ / ₄	58.72 (2.31)	66.68 2.63)
38 (1 ¹ / ₂) [24]	38.0 (1.50)	M12 x 1.75 x 40 $^{1}/_{2}$ -13 x 1 $^{1}/_{2}$	M16 x 2 x 55 ⁵ / ₈ –11 x 2 ¹ / ₄	69.85 (2.75)	79.38 (3.13)
50 (2) [32]	50.8 (2.00)	M12 x 1.75 x 40 $^{1}/_{2}$ -13 x 1 $^{1}/_{2}$	$\frac{M20 \times 2.5 \times 70}{^{3}\!/_{4}\!-\!10 \times 2^{3}\!/_{4}}$	77.77 (3.06)	96.82 (3.81)

JIS 210 Kgf/cm² **4-Bolt Square Flange**

The JIS 4-Bolt square flange connection is similar in concept to the SAE 4-bolt flange connection, except that the JIS bolt pattern is square and the flange itself is different.

Bolt Size mm (Bolt Bolt Hole Dia "D" Dim. Dim. Dim. Approx. length "A" "B" "C" Size inch for long design) mm mm (inch) mm mm (inch) mm size (inch) (inch) 12 $^{1}/_{2}$ M10 x 1.5 x 55 63 40 22 11 (0.87)(80) (2.48)(1.57)(0.43)³/4 19 M10 x 1.5 x 55 68 45 22 11 (80) (2.67)(1.77)(0.87)(0.43)25 M12 x 1.75 x 70 80 53 28 13 1 (3.15)(2.09)(1.10)(0.51)(100)32 $1^{1}/_{4}$ 28 M12 x 1.75 x 70 90 63 13 (100) (3.54)(2.48)(1.10)(0.51)38 $1^{1}/_{2}$ 100 70 36 18 M16 x 2.0 x 90 (130) (3.94)(2.76)(1.42)(0.71)50 2 M16 x 2.0 x 90 80 36 18 112 (130)(4.41)(3.15)(1.42)(0.71)

JIS 210 Kgf/cm² O-Ring

Nominal size mm	Dim. "D" mm	Dim. "W" mm
12	24.4 ± 0.15	3.1 ± 0.1
19	29.4 ± 0.15	3.1 ± 0.1
25	34.4 ± 0.15	3.1 ± 0.1
32	39.4 ± 0.15	3.1 ± 0.1
38	49.4 ± 0.15	3.1 ± 0.1
50	59.4 ± 0.15	3.1 ± 0.1

HOSE ASSEMBLY Equipment

How to Identify O-Ring Pilot Thread Sizes

This connection is common to air conditioning systems, both in vehicle and commercial applications. Both the male and female halves of the connections have a pilot, either long or short. The seal takes place by compressing an O-ring adjacent to the bead of the tube. The threads hold the connection together mechanically.

			Male Thread		F	emale Thread	
Inch Size	Dash Size	O.D. (inch) Nominal Thread	O.D. (inch) Fraction	O.D. (inch) Decimal	I.D. (inch) Nominal Thread	I.D. (inch) Fraction	I.D. (inch) Decimal
³ /8	06	⁵ / ₈ - 18	5/8	0.62	⁵ / ₈ - 18	⁹ /16	0.57
/2	08	³ /4 - 18	3/4	0.75	³ / ₄ - 16	¹¹ /16	0.69
/8	10	⁷ / ₈ - 18	7/8	0.87	⁷ / ₈ - 14	¹³ /16	0.81
/4	12	1 ¹ / ₁₆ -16	1 ¹ / ₁₆	1.06	1 ¹ / ₁₆ - 14	1	0.99

	Nominal	Long	Pilot	Short Pilot			
Inch Size	Tube Size	Bead O.D. (inch)	Pilot Length	Bead O.D. (inch)	Pilot Length		
³ /8	06	0.52	0.28	0.52	0.19		
¹ / ₂	08	0.64	0.39	0.64	0.19		
⁵ /8	10	0.77	0.39	0.77	0.19		
³ /4	12	0.91	0.39	0.91	0.19		

SPECIALTY & Truck Hose

Thread Engagement Nominal Dimensions

SPECIALTY & TRUCK HOSE

LOW & MEDIUM PRESSURE HOSE

HIGH PRESSURE HOSE

HOSE FITTINGS

ADAPTERS & TUBE FITTINGS

ACCESSORIES & ASSEMBLY INSTRUCTIONS Dimensions may vary due to tolerance conditions. Listed below are the thread engagement dimensions (B) which must be taken into consideration when making connection with ports or appropriate female adapters. The "B" dimension must be subtracted from the overall length (A) to insure proper connection.

Dash Size	Male	Pipe	SAE O-r SAE \ with 37°	ing Boss J1926 Flare J514	SAE O-ri SAE J with OR	ng Boss 1926 S J1453	
	Straight an Dimens	nd Angled ion "B"	Straight and Dimens	d Adjustable sion "B"	Straight and Dimensi	Adjustable on "B"	
	mm	in	mm	in	mm	in	
-02	6,4	0.25					
-04	9,7	0.38	9,1	0.36	10,9	0.43	
-05			9,1	0.36	10,9	0.43	
-06	9,7	0.38	9,1	0.39	11,9	0.47	
-08	12,7	0.50	10,9	0.43	14,0	0.55	
-10			12,7	0.50	16,0	0.63	
-12	15,7	0.62	15,0	0.59	18,5	0.73	
-14			15,0	0.59			
-16	17,5	0.69	15,0	0.59	18,5	0.73	
-20	17,5	0.69	15,0	0.59	18,5	0.73	
-24	17,5	0.69	15,0	0.59	18,5	0.73	
-32	19,1	0.75	15,0	0.59			

Allowable bulkhead thickness for ORS:

For 37° Flare:

Dash Size Hole Diameter **ORS Bulkhead Thickness** MIN MAX in in in mm mm -04 .575 +.015/-.000 5,1 0.20 12,7 0.50 .700 +.015/-.000 0.20 0.59 -06 5,1 15,0 -08 .825 +.015/-.000 5,6 0.22 15,0 0.59 -10 1.015 +.015/-.000 0.59 5,8 0.23 15,0 -12 1.200 +.015/-.000 6,4 0.25 15,0 0.59 0.60 -16 1.450 +.015/-.000 6,4 0.25 15,2 0.25 0.60 -20 1.715 +.015/-.000 6,4 15,2 -24 2.030 +.015/-.000 6,4 0.25 15,2 0.60

Dash Size	Hole Diameter	Thi	37° Bu ckness	lkhead Straig	hts	37° Bulkhead Thickness Shapes					
		MI	N	MA	λX	MI	N	M	AX		
	in	mm	in	mm	in	mm	in	mm	in		
-03	.391 +.016/000	1,3	0.05	10,4	0.41	3,3	0.13	6,4	0.25		
-04	.453 +.016/000	1,3	0.05	10,4	0.41	3,3	0.13	7,1	0.28		
-05	.516 +.016/000	1,3	0.05	10,4	0.41	3,3	0.13	7,1	0.28		
-06	.578 +.016/000	1,3	0.05	11,2	0.44	3,3	0.13	7,6	0.30		
-08	.766 +.016/000	1,3	0.05	11,2	0.44	4,1	0.16	8,6	0.34		
-10	.891 +.016/000	1,3	0.05	11,9	0.47	4,1	0.16	9,1	0.36		
-12	1.076 +.016/000	1,3	0.05	11,9	0.47	4,1	0.16	9,7	0.38		
-16	1.328 +.016/000	1,3	0.05	11,9	0.47	4,1	0.16	9,7	0.38		
-20	1.656 +.031/000	1,3	0.05	11,9	0.47	4,1	0.16	9,7	0.38		
-24	1.906 +.031/000	1,3	0.05	11,9	0.47	4,1	0.16	9,7	0.38		

Dimensions may vary due to tolerance conditions.

HOSE ASSEMBLY Equipment

Thread Style Pressure Performance/ Maximum Operating Pressure

The following table is a breakdown of hydraulic pressure performance by thread style and size for steel products. The table is based on limited laboratory test data and is intended only as an approximate guide to field performance of Eaton products. Figures shown are maximum oper-

Autom

ating pressures in BAR (psi), based upon a 4:1 safety factor relative to the connection minimum burst pressure. Testing was conducted at SAE recommended assembly torque in hardened test blocks. The pressure rating must be adjusted for any change in mating part material. The maximum

operating pressure for the adapter or tube fitting body must be the lower of the chosen mating end types.

Ann

LOW & MEDIUM Pressure hose

ž
ë
.
~
S
ŝ
2
÷
ē
Ξ

HOSE FITTINGS

ACCESSORIES &	ASSEMBLY INSTRUCTIONS

					NC]]						J				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		9
Dash Size	Inch Size	SAE1 Maxii Opera Press	00R2 mum ating sure	SA 37° I Male	AE Flare (JIC)	SA 37° F Swivel	E lare (JIC)	M Pi NI	ale ipe PTF	Fen Pi NF	nale pe PTF	Fem Pir Swi NPS	ale De Vel SM	*Ma O-ri Bo	ale ing ss	*Stra Thre O-ri Adjus	ight ead ng table	Fen O-i Bo	nale ring oss	
		bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	
-2	¹ /8							700,0	10000	350,0	5000	420,0	6000							
-4	¹ /4	350,0	5000	595,0	8500	385,0	5500	655,0	9500	315,0	4500	350,0	5000	525,0	7500	315,0	4500	315,0	4500	
-5	⁵ /16	297,0	4250	595,0	8500	350,0	5000							525,0	7500	245,0	3500	245,0	3500	
-6	³ /8	280,0	4000	490,0	7000	280,0	4000	560,0	8000	245,0	3500	280,0	4000	525,0	7500	280,0	4000	245,0	3500	
-8	¹ /2	245,0	3500	20,0	6000	280,0	4000	420,0	6000	245,0	3500	245,0	3500	525,0	7500	280,0	4000	210,0	3000	
-10	⁵ /8	192,0	2750	385,0	5500	210,0	3000							525,0	7500	280,0	4000	175,0	2500	
-12	³ /4	157,0	2250	280,0	4000	210,0	3000	350,0	5000	210,0	3000	245,0	3500	350,0	5000	245,0	3500	124,1	1800	
-14	7/8	140,0	2000	280,0	4000	210,0	3000							350,0	5000	210,0	3000	117,2	1700	
-16	1	140,0	2000	245,0	3500	175,0	2500	280,0	4000	175,0	2500	210,0	3000	315,0	4500	175,0	2500	112,0	1600	
-20	1 ¹ /4	113,0	1625	245,0	3500	140,0	2000	210,0	3000	140,0	2000	140,0	2000	315,0	4500	140,0	2000	105,0	1500	
-24	1 ¹ /2	87,0	1250	140,0	2000	105,0	1500	140,0	2000	105,0	1500	105,0	1500	245,0	3500	140,0	2000	105,0	1500	
-32	2	78,0	1125	87,0	1250	87,0	1250	140,0	2000	98,0	1400	105,0	1500	140,0	2000					
*For non "	'ORS'' adap	ters		1																

Dash Size	Inch Size	SAE1 Maxi Oper Pres	00r2 mum ating sure	O M	RS ale	OR Fem Swi	S ale vel	For Adaj ORB	ORS oters /STR	For Ada ORB	ORS pters /ADJ	Ma SA Flare	le E less	Fla Cod	nge e 61	Flar Code	1ge è 62
		bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi
-2	¹ /8																
-4	1/4	350,0	5000	630,0	9000	630,0	9000	630,0	9000	420,0	6000	420,0	6000				
-5	⁵ /16	297,0	4250														
-6	³ /8	280,0	4000	630,0	9000	630,0	9000	630,0	9000	420,0	6000	420,0	6000				
-8	¹ / ₂	245,0	3500	630,0	9000	560,0	8000	630,0	9000	420,0	6000	420,0	6000	350,0	5000	420,0	6000
-10	⁵ /8	192,0	2750	630,0	9000	560,0	8000	630,0	9000	420,0	6000	350,0	5000				
-12	³ /4	157,0	2250	420,0	6000	420,0	6000	420,0	6000	420,0	6000	315,0	4500	350,0	5000	420,0	6000
-14	7/ ₈	140,0	2000														
-16	1	140,0	2000	420,0	6000	420,0	6000	420,0	6000	350,0	5000	280,0	4000	350,0	5000	420,0	6000
-20	1 ¹ /4	113,0	1625	315,0	4500	315,0	4500	315,0	4500	315,0	4500			280,0	4000	420,0	6000
-24	1 ¹ /2	87,0	1250	280,0	4000	280,0	4000	280,0	4000	210,0	3000			210,0	3000	420,0	6000
-32	2	78,0	1125											210,0	3000	420,0	6000

Maximum Operating Pressures Bar/PSI for Hydraulic Tubing (SAEJ356, J524, J525, J526, J527)

.035

375,0 5450

bar psi .049

bar psi

3950 396 0 5750 420 0 6000

.065

bar psi

Tube O.D.

.19

.25

.31

.38

.50

.62

.75

1.00

1.25

1.50

2.00

Dash Size

-03

-04

-05

-06

-08

-10

-12

-16

-20

-24

-32

.028

bar psi

297,0 4250

213.0 3100 272.0

SPECIALTY & TRUCK HOSE

HOSE FITTINGS

ADAPTERS & TUBE FITTINGS

ACCESSORIES & ASSEMBLY INSTRUCTIONS

HOSE ASSEMBLY Equipment

			,-		,-								
69,0 2450	213,0 3	3100	315,0	4500	420,0	6000							
40,0 2000	175,0 2	2550	251,0	3650	350,0	5000	420,0 6000	420,0 6000					
	127,0 1	850	186,0	2700	251,0	3650	335,0 4800	388,0 5550	420,0 60	000	420,0 6000		
	105,0 1	500	145,0	2100	196,0	2850	258,0 3750	299,0 4350	353,0 50)50	392,0 5600		
	84,0 1	200	122,0	1750	162,0	2350	210,0 3050	248,0 3550	286,0 4	150	322,0 4600		
	62,0 9	900	89,0	1300	122,0	1750	157,0 2250) 182,0 2600	210,0 30	000	231,0 3350	262,0	3800
			70,0	1000	93,0	1350	122,0 1750) 143,0 2050	162,0 2	350	182,0 2650	189,0	2700
					79,0	1150	100,0 1450) 119,0 1700	134,0 19	950	148,0 2150	171,0	2450
					58,0	850	77,0 1100) 87,0 1250	100,0 14	450	112,0 1600	126,0	1800

.083

bar psi

Maximum operating pressure ratings at specified wall thickness are based upon recommended tubing ratings per SAEJ1065 as well as limited laboratory test data. Operating pressures are based upon a

Tubing Wall Thickness (in inches)

.109

bar psi

.120

bar psi

.134

bar psi

.148

bar psi

294,0 4200

203,0 2950

171,0 2450

140,0 2000

.156

bar psi

217,0 3100

182,0 2600

147,0 2100 178,0 2550

.188

bar psi

259,0 3750

220,0 3150

.095

bar psi

4:1 safety factor relative to tube burst data. Eaton recommends a maximum operating pressure of the joint which is the lesser of the tubing rating or the mating connector rating.

Recommended Wall Thickness (Inches) for Tube Fitting Applications

Tube	Dash	Versil-Flare SAE 37° Flare	Versil-Flare SAE 37° Flareless	ORS-BR SAE O-Ring Face Seal	ORS-TF SAE O-ring Face Seal
.19	-03	.028 – .035	.028 – .035		
.25	-04	.028 – .065	.028 – .065	.028 – .065	.028 – .065
.31	-05	.028 – .065	.028 – .065		
.38	-06	.028 – .065	.028 – .095	.035 – .083	.028 – .065
.50	-08	.035 – .083	.035 – .120	.035 – .109	.035 – .120
.62	-10	.035 — .095	.035 – .120	.035 – .120	.035 – .095
.75	-12	.035 – .109	.035 – .120	.035 – .120	.049 – .120
1.00	-16	.035 – .120	.035 – .134	.049 – .148	.049 – .134
1.25	-20	.049 – .120	.049 – .188	.049 – .188	.049 – .156
1.50	-24	.065 – .120	.065 – .188	.065 – .188	.065 – .188
2.00	-32	.065134	.065188		

Recommended Hydraulic Tubing Material Specifications

Hydraulic Tubing SAE Specifications

Versil-Flare SAE 37° Flare	Versil-Flare SAE 37° Flareless	ORS-BR SAE O-ring Face Seal	ORS-TF SAE O-ring Face Seal
SAEJ524	SAEJ356	SAEJ356	SAEJ356
SAEJ525	SAEJ524	SAEJ524	SAEJ524
	SAEJ525	SAEJ525	SAEJ525
	SAEJ527	SAEJ526	SAEJ526

Hydraulic tubing material description: SAEJ356 electric resistance welded flash controlled low carbon steel, SAEJ524 seamless annealed low carbon steel, SAEJ525 electric resistance welded cold worked annealed, SAEJ526

single wall welded low carbon steel (automotive), SAEJ527 brazed double wall low carbon steel (automotive). The maximum hardness of the above tubing should not exceed Rockwell B65.

Metric Thread Dimensions Conversion Adapters

Dimensions in mm Thread Size

B min (full thread)

BSPP (Parallel)

F Thread Dia.

A max

B1 min

D max

D6 min

D7 max

Threads

Sealing is achieved by means of an O-Ring, retaining washer and a properly machined port. The O-Ring is "captured" by the I.D. of

LOCKNUT

14.0

1.5

12.0

18.5

19.7

20.2

14.2

Sealing is achieved by

means of an O-Ring, retain-

16.0

1.5

12.0

18.5

23.2

23.7

16.2

18.0

2.0

12.0

18.5

26.2

26.9

18.2

BACK-UP WASHER

ETAINING WASHER

12.0

1.5

12.0

18.5

18.7

19.2

12.2

10.0

1.0

12.0

13.5

15.7

16.2

10.2

the retaining washer. The port may be of the spot faced or a flat machined surface as long as the D6 dimension is met.

RETAINING

WASHER

M 10 x 1 M 12 x 1.5 M 14 x 1.5 M 16 x 1.5 M 18 x 1.5 M 20 x 1.5 M 22 x 1.5 M 26 x 1.5 M 27 x 2 M 33 x 2 M 42 x 2

20.0

2.0

14.0

20.5

28.2

28.9

20.2

RETAINING WASHER O-RING

O-RING

DIN 3852 LARGE SPOTFACE

22.0

2.5

14.0

20.5

30.2

30.7

22.2

The O-Ring is "captured"

by the I.D. of the retaining

26.0

2.5

16.0

22.5

35.2

35.7

26.2

27.0

2.5

16.0

24.0

36.2

36.7

27.2

Assembly instructions for adjustable type adapters are presented on page 309.

EQUIVALENT TODIN 3852 FORM X

42.0

2.5

20.0

28.0

52.7

53.4

42.3

33.0

2.5

18.0

26.0

43.2

44.4

33.3

M 48 x 2

48.0

2.5

22.0

30.0

58.7

59.9

48.3

SPECIALTY & Truck hose

HIGH PRESSURE HOSE

HOSE FITTINGS

APTERS & E FITTINGS

ADA	TUB
	SNOIL

HOSE ASSEMBLY Equipment

ing washei machined	r and a properly port.
LOCKI BACK-UP WASI IETAINING WASI	

washer. The compression is controlled by the thickness of the retaining washer.

The port may be of the spot faced or a flat machined surface as long as the D6 dimension is met.

- D- -

	90°	
н В,	D,	

Thread Size	G 1/8	"-28	G 1/4	"-19	G 3/8	"-19	G 1/2	2"-14	G 3/4	! "-14	G 1	"-11	G 11	/4"-11	G 11	/2"-11
	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in
F Thread Dia.	9,7	0.38	13,2	0.50	16,7	0.66	20,9	0.83	26,4	1.04	33,3	1.31	41,9	1.65	47,8	1.88
A max	1,0	0.04	2,0	0.08	2,05	0.10	2,5	0.10	2,5	0.10	2,5	0.10	2,5	0.10	2,5	0.10
B min	8,0	0.31	12,0	0.47	12,0	0.47	14,0	0.63	16,0	0.63	18,0	0.71	20,0	0.79	22,0	0.87
B1 min (full thread)	13,0	0.51	18,5	0.73	18,5	0.73	22,0	0.94	24,0	0.94	27,0	1.06	29,0	1.14	31,0	1.22
D max	15,7	0.62	19,7	0.78	24,0	0.94	28,7	1.38	35,2	1.38	43,2	1.70	52,7	2.07	58,7	2.31
D6 min	16,2	0.64	20,2	0.81	24,9	0.98	29,4	1.43	36,4	1.43	44,4	1.75	53,4	2.10	59,9	2.36
D7 max	10,0	0.39	13,4	0.53	16,9	0.67	21,2	1.05	26,7	1.05	33,6	1.32	42,3	1.67	48,2	1.90

BSPT (Tapered) Threads **Port Sealing**

Sealing is achieved by means of metal to metal deformation of the adapter and port threads.

Thread Size	R 1/8	3"-28	R 1/4	"-19	R 3/8	8"-19	R 1/2	"-14	R 3/4	l"-14	R 1"-	11	R 11/	4"-11	R 1 1	/2"-11
	mm	in	mm	in												
B2 min (full thread)	5,5	0.22	8,5	0.33	8,5	0.33	10,5	0.41	13,0	0.51	14,5	0.57	17,0	0.67	17,0	0.67

Recommended Parallel Connection Assembly Torque

Eaton recommends that a torque wrench be used to assure proper fitting assembly of these connections.

The values listed are for steel connections. Contact Eaton for torque values for other materials.

Straight Thread O-Ring Boss Low Pressure with 37° (SAEJ514)

Straight Thread O-Ring Boss High Pressure with ORS (J1453)

Dash Size	Thread Size (inches)	Jam Nut or Straight FittingTorque Ibft.	Jam Nut or Straight FittingTorque Newton Meters
03	³ /8-24	8-9	12-13
-04	⁷ / ₁₆ -20	13-15	18-20
05	¹ /2-20	14-15	19-21
-06	⁹ / ₁₆ -18	23-24	32-33
-08	³ /4-16	40-43	55-57
-10	⁷ /8-14	43-48	59-64
-12	1 ¹ / ₁₆ -12	68-75	93-101
-14	1 ³ / ₁₆ -12	83-90	113-122
-16	1 ⁵ / ₁₆ -12	112-123	152-166
-20	1 ⁵ /8-12	146-161	198-218
-24	1 ⁷ /8-12	154-170	209-230
-32	2 ¹ /2-12	218-240	296-325

Dash Size	Thread Size (inches)	Jam Nut or Straight Fitting Torque Ibft.	Jam Nut or Straight Fitting Torque Newton Meters
-03	³ /8-24	8-10	11-13
-04	⁷ / ₁₆ -20	14-16	20-22
-05	¹ / ₂ -20	18-20	24-27
-06	⁹ / ₁₆ -18	24-26	33-35
-08	³ /4-16	50-60	68-78
-10	⁷ / ₈ -14	72-80	98-110
-12	1 ¹ / ₁₆ -12	125-135	170-183
-14	1 ³ / ₁₆ -12	160-180	215-245
-16	1 ⁵ / ₁₆ -12	200-220	270-300
-20	1 ⁵ / ₈ -12	210-280	285-380
-24	1 ⁷ /8-12	270-360	370-490

ORS

Dash Size	Thread Size (inches)	Swivel Nut Torque Ibft.	Swivel Nut Torque Newton Meters
-04	⁹ / ₁₆ -18	10-12	14-16
-06	¹¹ /16-16	18-20	24-27
-08	¹³ / ₁₆ -16	32-35	43-47
-10	1-14	46-50	62-68
-12	1 ³ / ₁₆ -12	65-70	88-95
-16	1 ⁷ / ₁₆ -12	92-100	125-136
-20	1 ¹¹ / ₁₆ -12	125-140	170-190
-24	2-12	150-165	204-224

SAE 37° (JIC)

JAL J			
Dash Size	Thread Size (inches)	Swivel Nut Torque Ibft.	Swivel Nut Torque Newton Meters
-04	⁷ / ₁₆ -20	11-12	15-16
-05	¹ /2-20	15-16	20-22
-06	⁹ / ₁₆ -18	18-20	24-28
-08	³ /4-16	38-42	52-58
-10	⁷ /8-14	57-62	77-85
-12	1 ¹ / ₁₆ -12	79-87	108-119
-16	1 ⁵ / ₁₆ -12	108-113	148-154
-20	1 ⁵ /8-12	127-133	173-182
-24	1 ⁷ /8-12	158-167	216-227
-32	2 ¹ /2-12	245-258	334-352

Metric

Thread Size	Straight	Adapter or Locknut Torque
mm	lbft.	Newton Meters
M10 x 1	13-15	18-20
M12 x 1.5	15-19	20-25
M14 x 1.5	19-23	25-30
M16 x 1.5	33-40	45-55
M18 x 1.5	37-44	50-60
M20 x 1.5	52-66	70-90
M22 x 1.5	55-70	75-95
M26 x 1.5	81-96	110-130
M27 x 2	96-111	130-150
M33 x 2	162-184	220-250
M42 x 2	170-192	230-260
M48 x 2	258-347	350-470

BSPP

Thread Size	Straight Adapter or Locknut Torque				
inches**	lbft.	Newton Meters			
G 1/8-28	13-15	18-20			
G 1/4-19	19-23	25-30			
G ³ / ₈ -19	33-40	45-55			
G ¹ / ₂ -14	55-70	75-95			
G ³ / ₄ -14	103-118	140-160			
G 1-11	162-184	220-250			
G 1 ¹ / ₄ -11	170-192	230-260			
G 1 ¹ / ₂ -11	258-347	350-470			

**"G" denotes parallel threads, other than ISO 6149. (Port connection only)

LOW & MEDIUM PRESSURE HOSE

HIGH PRESSURE HOSE

HOSE FITTINGS

ADAPTERS & TUBE FITTINGS

ACCESSORIES & ASSEMBLY INSTRUCTIONS

HOSE ASSEMBLY Equipment

APPENDICIES

Proper Tube Installation

Figure 2

When compared to rigid pipe, hydraulic tubing offers the following advantages:

- 1. Size for size, tubing is lighter in weight, easier to handle and can be bent more easily than iron pipe.
- 2 Bent tubing reduces pressure drop and turbulence in the system because it eliminates sudden change in the direction of the fluid flow.
- 3.Hydraulic tubing reduces the number of connections required, thus reducing material and labor costs.
- 4. Fewer joints means lower costs and fewer points of potential leakage.
- 5.The use of tube fittings makes every joint a union which permits easier, faster maintenance and repair work.
- 6.The ORS-TF Tube Fitting eliminates the need for threading, brazing or welding.

Tube bending

To reduce the number of fittings in a tube assembly, bend the tubing whenever possible.

Steel tubing can be bent in many sizes by using a hand bender designed for steel tubing. For production quantities, or for larger sizes, a power bending tool is generally used. Contact Eaton for additional tube bending information.

Tube routing and installation

Tubing manufacturers will advise the correct radii for various types and wall thicknesses of tubing. Kinks, flattened bends, wrinkles and tube breakage can be avoided by the use of proper tube bending equipment.

Avoid straight line connections whenever possible, especially in short runs.

Fluid conveying systems (see figures 2, 3 and 4) should be designed to follow the contour of the equipment. They are easier to install and present a neater appearance. Long runs should be supported by brackets or clamps. All heavy systems components should be bolted or clamped to eliminate tubing fatigue. Inspect the tubing to see that it conforms to the required specifications before installation.

Figure 4

Tubes should align with the center line of the fittings, without distortion or tension. Tubing should not be sprung into position (see figure 1) to be assembled to the fitting. If this occurs the tubing has not been properly fabricated, and when installed and connected, places the tubing under stress. LOW & MEDIUM Pressure hose

HIGH PRESSURE HOSE

HOSE FITTINGS

ADAPTERS & Tube fittings

Conversions

Millimeters

SPECIALTY & TRUCK HOSE Inch/Millimeter **Conversion Table**

Inches

Multiply inches x 25.4 = Millimeters

Millimeters

Inches

PRESSURE HOSE	LOW & MEDIUM
m	

fractions	decimals	decimals
¹ / ₆₄	.016	.397
¹ / ₃₂	.031	.794
³ / ₆₄	.047	1.191
¹ / ₁₆	.063	1.588
⁵ / ₆₄	.078	1.984
³ / ₃₂	.094	2.381
7/64	.109	2.778
1/8	.125	3.175
⁹ / ₆₄	.141	3.572
⁵ / ₃₂	.156	3.969
¹¹ / ₆₄	.172	4.366
³ / ₁₆	.188	4.763
¹³ / ₆₄	.203	5.159
7/32	.219	5.556
¹⁵ / ₆₄	.234	5.953
1/4	.250	6.350

fractions	decimals	decimals
¹⁷ / ₆₄	.266	6.747
⁹ / ₃₂	.281	7.144
¹⁹ / ₆₄	.297	7.541
⁵ /16	.313	7.938
²¹ / ₆₄	.328	8.334
¹¹ / ₃₂	.344	8.731
²³ / ₆₄	.359	9.128
³ /8	.375	9.525
²⁵ / ₆₄	.391	9.922
¹³ / ₃₂	.406	10.319
²⁷ / ₆₄	.422	10.716
⁷ / ₁₆	.438	11.113
²⁹ / ₆₄	.453	11.509
¹⁵ / ₃₂	.469	11.906
³¹ / ₆₄	.484	12.303
1/2	.500	12.700

Inches	Millimeters		Inches
fractions	decimals	decimals	fractio
³³ / ₆₄	.516	13.097	⁴⁹ /64
¹⁷ / ₃₂	.531	13.494	²⁵ /32
³⁵ / ₆₄	.547	13.891	⁵¹ /64
⁹ /16	.563	14.288	¹³ /16
³⁷ / ₆₄	.578	14.684	⁵³ /64
¹⁹ /32	.594	15.081	²⁷ /32
³⁹ / ₆₄	.609	15.478	⁵⁵ /64
⁵ /8	.625	15.875	7/8
⁴¹ / ₆₄	.641	16.272	⁵⁷ /64
²¹ / ₃₂	.656	16.669	²⁹ /32
⁴³ / ₆₄	.672	17.066	⁵⁹ /64
¹¹ /16	.688	17.463	¹⁵ /16
⁴⁵ /64	.703	17.859	⁶¹ /64
²³ / ₃₂	.719	18.256	³¹ /32
47/64	.734	18.653	⁶³ /64
³ / ₄	.750	19.050	1

Inches	Millimeters	
fractions	decimals	decimals
⁴⁹ / ₆₄	.766	19.447
²⁵ / ₃₂	.781	19.844
⁵¹ / ₆₄	.797	20.241
¹³ /16	.813	20.638
⁵³ / ₆₄	.828	21.034
²⁷ / ₃₂	.844	21.431
⁵⁵ / ₆₄	.859	21.828
⁷ /8	.875	22.225
⁵⁷ / ₆₄	.891	22.622
²⁹ / ₃₂	.906	23.019
⁵⁹ / ₆₄	.922	23.416
¹⁵ /16	.938	23.813
⁶¹ / ₆₄	.953	24.209
³¹ / ₃₂	.969	24.606
⁶³ / ₆₄	.984	25.003
1	1.000	25.400

Pressure Conversion Table

Мра	Bar	PSI
0.25	2.5	35
0.3	3	45
0.35	3.5	50
0.4	4	56
0.4	4	62
0.5	5	70
0.6	6	90
0.7	7	100
0.8	8	112
0.85	8.5	125
1	10	140
1.05	10.5	150
1.25	12.5	180
1.4	14	200
1.6	16	225
1.7	17	250
2.1	21	300
2.4	24	350
2.6	26	375
2.8	28	400
3.5	35	500
3.9	39	565

(Per SAE J517 Appendix A)

Bar	PSI
42	600
43	625
49	700
50	725
52	750
56	800
61	875
70	1000
78	1125
84	1200
87	1250
98	1400
100	1450
105	1500
112	1600
113	1625
122	1750
140	2000
157	2250
168	2400
175	2500
192	2750
	Bar 42 43 49 50 52 56 61 70 78 84 87 98 100 105 112 113 122 140 157 168 175 192

200 2900 20 21 210 3000 22.4 224 3200 22.7 227 3250 24.5 245 3500 4000 28 280 29.7 297 4250 31.5 315 4500 4800 33.5 335 350 5000 35 38.5 385 5500 40 400 5800 42 420 6000 43.5 435 6250 45.5 6500 455 7000 49 490 52.5 525 7500 8000 56 560 59.5 595 8500 61 610 8750 63 630 9000 70 700 10000

Bar

PSI

Mpa

Mpa	Bar	P51
77	770	11000
78	780	11250
80	800	11600
84	840	12000
87	870	12500
98	980	14000
112	1120	16000
119	1190	17000
122	1220	17500
140	1400	20000
157	1570	22500
160	1600	23200
168	1680	24000
175	1750	25000
210	2100	30000
245	2450	35000
280	2800	40000
315	3150	45000
350	3500	50000

A new method for calculating the equivalent metric conversion to Mpa from psi was utilized. This method provides an extremely easy and consistent method of conversion to arrive at a rounded metric units using

7 Mpa for each 1000 psi. The resulting Mpa pressure in never more than 1.7% higher that the mathematically correct Mpa unit when the pressure in higher than 250 psi. All operating pressures of SAE J517 hoses

are above 250 psi except for most of 100R4 and the 76mm (-48) and larger sizes of 100R5. Therefore all files of previous test results should not be compromised.